Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; 32(2): e13730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193767

RESUMO

This study aimed to examine the impact of break duration between consecutive shifts, time of break onset, and prior shift duration on total sleep time (TST) between shifts in heavy vehicle drivers (HVDs), and to assess the interaction between break duration and time of break onset. The sleep (actigraphy and sleep diaries) and work shifts (work diaries) of 27 HVDs were monitored during their usual work schedule for up to 9 weeks. Differences in TST between consecutive shifts and days off were assessed. Linear mixed models (followed by pairwise comparisons) assessed whether break duration, prior shift duration, time of break onset, and the interaction between break duration and break onset were related to TST between shifts. Investigators found TST between consecutive shifts (mean [SD] 6.38 [1.38] h) was significantly less than on days off (mean [SD] 7.63 [1.93] h; p < 0.001). Breaks starting between 12:01 and 8:00 a.m. led to shorter sleep (p < 0.05) compared to breaks starting between 4:01 and 8:00 p.m. Break durations up to 7, 9, and 11 h (Australian and European minimum break durations) resulted in a mean (SD) of 4.76 (1.06), 5.66 (0.77), and 6.41 (1.06) h of sleep, respectively. The impact of shift duration prior to the break and the interaction between break duration and time of break were not significant. HVDs' sleep between workdays is influenced independently by break duration and time of break onset. This naturalistic study provides evidence that current break regulations prevent sufficient sleep duration in this industry. Work regulations should evaluate appropriate break durations and break onset times to allow longer sleep opportunities for HVDs.


Assuntos
Sono , Tolerância ao Trabalho Programado , Humanos , Austrália , Duração do Sono , Actigrafia
2.
Nat Commun ; 15(1): 1442, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365882

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and multiple types of B cell malignancies. Emerging evidence demonstrates that KSHV reprograms host-cell central carbon metabolic pathways, which contributes to viral persistence and tumorigenesis. However, the mechanisms underlying KSHV-mediated metabolic reprogramming remain poorly understood. Carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) is a key enzyme of the de novo pyrimidine synthesis, and was recently identified to deamidate the NF-κB subunit RelA to promote aerobic glycolysis and cell proliferation. Here we report that KSHV infection exploits CAD for nucleotide synthesis and glycolysis. Mechanistically, KSHV vCyclin binds to and hijacks cyclin-dependent kinase CDK6 to phosphorylate Ser-1900 on CAD, thereby activating CAD-mediated pyrimidine synthesis and RelA-deamidation-mediated glycolytic reprogramming. Correspondingly, genetic depletion or pharmacological inhibition of CDK6 and CAD potently impeded KSHV lytic replication and thwarted tumorigenesis of primary effusion lymphoma (PEL) cells in vitro and in vivo. Altogether, our work defines a viral metabolic reprogramming mechanism underpinning KSHV oncogenesis, which may spur the development of new strategies to treat KSHV-associated malignancies and other diseases.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/metabolismo , Glicólise , Carcinogênese , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Nucleotídeos/metabolismo
3.
Biol Invasions ; : 1-17, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37362907

RESUMO

The goal of most invasive species suppression programs is to achieve long-term sustained reductions in population abundance, yet removal programs can be stymied by density-dependent population responses. We tested a harvest removal strategy for invasive Rusty Crayfish (Faxonius rusticus) at two nearshore native fish spawning habitats in northern Lake Michigan. Changes in average Rusty Crayfish densities were evaluated with a before-after reference-impact study design. We removed 3182 Rusty Crayfish, primarily adults (> 20 mm carapace length), at two sites over two harvest seasons, expending 17,825 trap days in effort. Generalized linear modeling results suggested a statistically significant reduction in Rusty Crayfish densities was achieved at one reef, Little Traverse Bay (LTB Crib). Reduced densities were sustained over the egg maturation period for native fish and into the following year after removal ceased. By late summer/early fall, between consecutive suppression efforts in 2018 and 2019, we observed a threefold increase in pre-removal densities. Size-frequency histograms from diver quadrat surveys showed higher abundances of juvenile (< 20 mm carapace length) size classes the following spring and summer at LTB Crib compared to its paired reference site. Stock-recruit curves fit to count data, pooled across all sites, provided further evidence of density-dependence. With a proviso that we only conducted two seasons of consecutive suppression, this study highlights an important aspect of invasive species management and raises questions about the efficacy of adult-only crayfish removal strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03076-6.

4.
Digit Health ; 9: 20552076231165972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009306

RESUMO

Objective: Development of personalized sleep-wake management tools is critical to improving sleep and functional outcomes for shift workers. The objective of the current study was to test the performance, engagement and usability of a mobile app (SleepSync) for personalized sleep-wake management in shift workers that aid behavioural change and provide practical advice by providing personalized sleep scheduling recommendations and education. Methods: Shift workers (n = 27; 20 healthcare and 7 from other industries) trialled the mobile app for two weeks to determine performance, engagement and usability. Primary outcomes were self-reported total sleep time, ability to fall asleep, sleep quality and perception of overall recovery on days off. Secondary performance outcomes included sleep disturbances (insomnia and sleep hygiene symptoms, and sleep-related impairments) and mood (anxiety, stress and depression) pre- and post-app use. Satisfaction with schedule management, integration into daily routine and influence on behaviour were used to determine engagement, while the usability was assessed for functionality and ease of use of features. Results: Total sleep time (P = .04), ability to fall asleep (P < .001), quality of sleep (P = .001), insomnia (P = .02), sleep hygiene (P = .01), sleep-related impairments (P = .001), anxiety (P = .001), and stress (P = .006) were all improved, with non-significant improvements in recovery on days off (P = .19) and depression (P = .07). All measures of engagement and usability were scored positively by the majority of users. Conclusions: This pilot trial provides preliminary evidence of the positive impact of the SleepSync app in improving sleep and mood outcomes in shift workers, and warrants confirmation in a larger controlled trial.

5.
Manag Biol Invasion ; 13(1): 45-67, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35664708

RESUMO

At least 65 aquatic plant species have been identified as part of a surveillance list of non-native species that pose a threat to biodiversity and ecosystem services in the Laurentian Great Lakes. Early detection of these potentially invasive aquatic plants (IAP) could minimize impacts of novel incursions and facilitate successful eradication. We developed, implemented, and then adaptively refined a probabilistic boat-based sampling design that aimed to maximize the likelihood of detecting novel IAP incursions in large (400+ hectares) Great Lakes coastal areas. Surveys were conducted from 2017 to 2019 at five Great Lakes locations - St Joseph River (MI), Saginaw River (MI), Milwaukee (WI), Cleveland (OH), and the Detroit River (MI). Aquatic plant communities were characterized across the five sites, with a total of 61 aquatic plant species detected. One-fifth of the species detected in our surveys were non-native to the Great Lakes basin. Sample-based species rarefaction curves, constructed from detection data from all surveys combined at each location, show that the estimated sample effort required for high confidence (> 95%) detection of all aquatic plants at a site, including potentially invasive species, varies (< 100 sample units for Detroit River; > 300 sample units for Milwaukee, roughly equivalent to 6 to 18 days sampling effort, respectively). At least 70% of the estimated species pool was detected at each site during initial 3-day surveys. Leveraging information on detection patterns from initial surveys, including depth and species richness strata, improved survey efficiency and completeness at some sites, with detection of at least 80% of the estimated species pool during subsequent surveys. Based on a forest-based classification and regression method, a combination of just five variables explained 70% or more of the variation in observed richness at all sites (depth, fetch, percent littoral, distance to boat ramps and distance to marinas). We discuss how the model outcomes can be used to inform survey design for other Great Lakes coastal areas. The survey design we describe provides a useful template that could be adaptively improved for early detection of IAP in the Great Lakes.

6.
Accid Anal Prev ; 159: 106224, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34192654

RESUMO

BACKGROUND: An inadequate rest break between shifts may contribute to driver sleepiness. This study assessed whether extending the major rest break between shifts from 7-hours (Australian industry standard) to 11-hours, improved drivers' sleep, alertness and naturalistic driving performance. METHODS: 17 heavy vehicle drivers (16 male) were recruited to complete two conditions. Each condition comprised two 13-hour shifts, separated by either a 7- or 11-hour rest break. The initial 13-hour shift was the drivers' regular work. The rest break and following 13-hour shift were simulated. The simulated shift included 5-hours of naturalistic driving with measures of subjective sleepiness, physiological alertness (ocular and electroencephalogram) and performance (steering and lane departures). RESULTS: 13 drivers provided useable data. Total sleep during the rest break was greater in the 11-hour than the 7-hour condition (median hours [25th to 75th percentile] 6.59 [6.23, 7.23] vs. 5.07 [4.46, 5.38], p = 0.008). During the simulated shift subjective sleepiness was marginally better for the 11-hour condition (mean Karolinska Sleepiness Scale [95th CI] = 4.52 [3.98, 5.07] vs. 5.12 [4.56, 5.68], p = 0.009). During the drive, ocular and vehicle metrics were improved for the 11-hour condition (p<0.05). Contrary to expectations, mean lane departures p/hour were increased during the 11-hour condition (1.34 [-0.38,3.07] vs. 0.63 [-0.2,1.47], p = 0.027). CONCLUSIONS: Extending the major rest between shifts substantially increases sleep duration and has a modest positive impact on driver alertness and performance. Future work should replicate the study in a larger sample size to improve generalisability and assess the impact of consecutive 7-hour major rest breaks.


Assuntos
Condução de Veículo , Tolerância ao Trabalho Programado , Acidentes de Trânsito , Austrália , Humanos , Masculino , Veículos Automotores , Sono , Vigília
7.
Ecology ; 91(3): 882-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20426345

RESUMO

Predicting where species invasions will occur remains a substantial challenge in ecology, but identifying factors that ultimately constrain the distribution of potential invaders could facilitate successful prediction. Whereas ultraviolet radiation (UVR) is recognized as an important factor controlling species distribution and community composition, the role of UVR in a habitat invasibility context has not been explored. Here we examine how underwater UVR can regulate warm-water fish invasion. In Lake Tahoe, California and Nevada, USA, established populations of exotic bluegill sunfish (Lepomis macrochirus) are currently limited to turbid, low-UVR embayments. An in situ incubation experiment that manipulated incident UVR exposure of larval bluegill, combined with an assessment of UVR exposure levels in nearshore habitats around Lake Tahoe, demonstrates that UVR can mediate habitat invasibility. Our findings suggest that the susceptibility to invasion by UVR sensitive species may increase in transparent aquatic systems threatened by declining water quality, and they highlight the importance of abiotic factors as regulators of invasion risk in ecosystems.


Assuntos
Ecossistema , Água Doce , Perciformes/crescimento & desenvolvimento , Raios Ultravioleta , Animais , California , Conservação dos Recursos Naturais , DNA/análise , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Nevada
8.
Manag Biol Invasion ; 11(3): 607-632, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-36072892

RESUMO

Risk-based prioritization for early detection monitoring is of utmost importance to prevent and mitigate invasive species impacts. The Great Lakes Water Quality Agreement, a binational commitment between the United States and Canada to restore and protect the waters of the Laurentian Great Lakes, identifies aquatic invasive species (AIS) as one of ten priority issues (annexes) that must be addressed to ensure the chemical, physical, and biological integrity of the Great Lakes. The Agreement calls out the need for a comprehensive strategy for detecting and tracking new and potentially invasive species. Yet, with a surface water area of 95, 000 square miles (246, 049 square km) and shoreline length of 10, 210 miles (16, 431 km), the Great Lakes represent a daunting challenge for prioritizing where AIS surveillance activities should occur. Our goal was to develop a spatially-explicit and quantitative approach for identifying the highest risk sites for AIS introduction into the US waters of the Great Lakes based on the cumulative risk of new introductions (including range expansions) from a range of pathways and associated taxa. We estimate "invasion risk" scores for nearly 6,000 sites (9 km x 9 km) across the Great Lakes basin using proxy measures for propagule pressure weighted by the proportion of taxa associated with each proxy variable. Proxy variables include human population, number of ship visits, marina size, number of ponds, and number of natural or artificial aquatic connections. In total, we identify more than 1,800 sites with invasion risk scores >0. A small subset of these 1,800+ sites accounts for a majority of predicted propagule pressure and are therefore logical targets for future surveillance and AIS prevention efforts. Many of the highest risk sites are located in western Lake Erie, southern Lake Michigan, and the St. Clair-Detroit River System.

9.
Environ Toxicol Chem ; 31(5): 1129-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407869

RESUMO

Within Lake Tahoe (CA/NV), USA, multiple environmental stressors are present that can affect both native and nonnative fish species. Stressors include natural ultraviolet radiation (UVR) and polycyclic aromatic hydrocarbons (PAHs). Many PAHs, such as fluoranthene (FLU) are phototoxic to aquatic organisms in the presence of UVR. Decreasing levels of UVR due to eutrophication and increasing levels of PAHs due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. The objective of the present study was to examine the differential effects of exposure to different levels of UVR and phototoxic FLU in native and nonnative fish species. Responses to these changes in the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) were compared during toxicity tests, which were conducted in controlled outdoor exposures. Physiological defenses were also investigated in an attempt to elucidate ways each species may tolerate UVR and UVR + FLU exposures. It was determined that the native redside minnow is more tolerant to UVR and UVR + FLU exposure when compared to the nonnative bluegill. In addition, a natural UVR coping mechanism, increased pigmentation, is exhibited to a greater extent in the native redside. The present study will help determine the potential for a future successful invasion of the bluegill and similar species in Lake Tahoe and other oligotrophic, montane lakes that are susceptible to habitat alteration, nutrient inputs, and recreational activity.


Assuntos
Cyprinidae/fisiologia , Fluorenos/efeitos adversos , Perciformes/fisiologia , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Comportamento Animal , California , Ecossistema , Lagos/química , Dose Letal Mediana , Nevada , Pigmentação , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA