Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 66: 82-94, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28034788

RESUMO

INTRODUCTION: The authors of this work propose an unsupervised machine learning model that has the ability to identify real-world latent infectious diseases by mining social media data. In this study, a latent infectious disease is defined as a communicable disease that has not yet been formalized by national public health institutes and explicitly communicated to the general public. Most existing approaches to modeling infectious-disease-related knowledge discovery through social media networks are top-down approaches that are based on already known information, such as the names of diseases and their symptoms. In existing top-down approaches, necessary but unknown information, such as disease names and symptoms, is mostly unidentified in social media data until national public health institutes have formalized that disease. Most of the formalizing processes for latent infectious diseases are time consuming. Therefore, this study presents a bottom-up approach for latent infectious disease discovery in a given location without prior information, such as disease names and related symptoms. METHODS: Social media messages with user and temporal information are extracted during the data preprocessing stage. An unsupervised sentiment analysis model is then presented. Users' expressions about symptoms, body parts, and pain locations are also identified from social media data. Then, symptom weighting vectors for each individual and time period are created, based on their sentiment and social media expressions. Finally, latent-infectious-disease-related information is retrieved from individuals' symptom weighting vectors. DATASETS AND RESULTS: Twitter data from August 2012 to May 2013 are used to validate this study. Real electronic medical records for 104 individuals, who were diagnosed with influenza in the same period, are used to serve as ground truth validation. The results are promising, with the highest precision, recall, and F1 score values of 0.773, 0.680, and 0.724, respectively. CONCLUSION: This work uses individuals' social media messages to identify latent infectious diseases, without prior information, quicker than when the disease(s) is formalized by national public health institutes. In particular, the unsupervised machine learning model using user, textual, and temporal information in social media data, along with sentiment analysis, identifies latent infectious diseases in a given location.


Assuntos
Doenças Transmissíveis , Mineração de Dados , Mídias Sociais/estatística & dados numéricos , Aprendizado de Máquina não Supervisionado , Humanos , Saúde Pública , Rede Social
2.
J Biomed Inform ; 68: 1-19, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213145

RESUMO

It is believed that anomalous mental states such as stress and anxiety not only cause suffering for the individuals, but also lead to tragedies in some extreme cases. The ability to predict the mental state of an individual at both current and future time periods could prove critical to healthcare practitioners. Currently, the practical way to predict an individual's mental state is through mental examinations that involve psychological experts performing the evaluations. However, such methods can be time and resource consuming, mitigating their broad applicability to a wide population. Furthermore, some individuals may also be unaware of their mental states or may feel uncomfortable to express themselves during the evaluations. Hence, their anomalous mental states could remain undetected for a prolonged period of time. The objective of this work is to demonstrate the ability of using advanced machine learning based approaches to generate mathematical models that predict current and future mental states of an individual. The problem of mental state prediction is transformed into the time series forecasting problem, where an individual is represented as a multivariate time series stream of monitored physical and behavioral attributes. A personalized mathematical model is then automatically generated to capture the dependencies among these attributes, which is used for prediction of mental states for each individual. In particular, we first illustrate the drawbacks of traditional multivariate time series forecasting methodologies such as vector autoregression. Then, we show that such issues could be mitigated by using machine learning regression techniques which are modified for capturing temporal dependencies in time series data. A case study using the data from 150 human participants illustrates that the proposed machine learning based forecasting methods are more suitable for high-dimensional psychological data than the traditional vector autoregressive model in terms of both magnitude of error and directional accuracy. These results not only present a successful usage of machine learning techniques in psychological studies, but also serve as a building block for multiple medical applications that could rely on an automated system to gauge individuals' mental states.


Assuntos
Emoções , Aprendizado de Máquina , Saúde Mental , Previsões , Humanos , Modelos Teóricos
3.
J Biomed Inform ; 49: 255-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642081

RESUMO

OBJECTIVES: The role of social media as a source of timely and massive information has become more apparent since the era of Web 2.0.Multiple studies illustrated the use of information in social media to discover biomedical and health-related knowledge.Most methods proposed in the literature employ traditional document classification techniques that represent a document as a bag of words.These techniques work well when documents are rich in text and conform to standard English; however, they are not optimal for social media data where sparsity and noise are norms.This paper aims to address the limitations posed by the traditional bag-of-word based methods and propose to use heterogeneous features in combination with ensemble machine learning techniques to discover health-related information, which could prove to be useful to multiple biomedical applications, especially those needing to discover health-related knowledge in large scale social media data.Furthermore, the proposed methodology could be generalized to discover different types of information in various kinds of textual data. METHODOLOGY: Social media data is characterized by an abundance of short social-oriented messages that do not conform to standard languages, both grammatically and syntactically.The problem of discovering health-related knowledge in social media data streams is then transformed into a text classification problem, where a text is identified as positive if it is health-related and negative otherwise.We first identify the limitations of the traditional methods which train machines with N-gram word features, then propose to overcome such limitations by utilizing the collaboration of machine learning based classifiers, each of which is trained to learn a semantically different aspect of the data.The parameter analysis for tuning each classifier is also reported. DATA SETS: Three data sets are used in this research.The first data set comprises of approximately 5000 hand-labeled tweets, and is used for cross validation of the classification models in the small scale experiment, and for training the classifiers in the real-world large scale experiment.The second data set is a random sample of real-world Twitter data in the US.The third data set is a random sample of real-world Facebook Timeline posts. EVALUATIONS: Two sets of evaluations are conducted to investigate the proposed model's ability to discover health-related information in the social media domain: small scale and large scale evaluations.The small scale evaluation employs 10-fold cross validation on the labeled data, and aims to tune parameters of the proposed models, and to compare with the stage-of-the-art method.The large scale evaluation tests the trained classification models on the native, real-world data sets, and is needed to verify the ability of the proposed model to handle the massive heterogeneity in real-world social media. FINDINGS: The small scale experiment reveals that the proposed method is able to mitigate the limitations in the well established techniques existing in the literature, resulting in performance improvement of 18.61% (F-measure).The large scale experiment further reveals that the baseline fails to perform well on larger data with higher degrees of heterogeneity, while the proposed method is able to yield reasonably good performance and outperform the baseline by 46.62% (F-Measure) on average.


Assuntos
Educação em Saúde , Serviços de Informação , Mídias Sociais , Algoritmos , Inteligência Artificial
4.
IEEE Trans Biomed Eng ; 70(8): 2430-2444, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37027661

RESUMO

In this work, we propose a non-contact video-based approach that detects when an individual's skin temperature is elevated beyond the normal range. The detection of elevated skin temperature is critical as a diagnostic tool to infer the presence of an infection or an abnormal health condition. Detection of elevated skin temperature is typically achieved using contact thermometers or non-contact infrared-based sensors. The ubiquity of video data acquisition devices such as mobile phones and computers motivates the development of a binary classification approach, the Video-based TEMPerature (V-TEMP) to classify subjects with non-elevated/elevated skin temperature. We leverage the correlation between the skin temperature and the angular reflectance distribution of light, to empirically differentiate between skin at non-elevated temperature and skin at elevated temperature. We demonstrate the uniqueness of this correlation by 1) revealing the existence of a difference in the angular reflectance distribution of light from skin-like and non-skin like material and 2) exploring the consistency of the angular reflectance distribution of light in materials exhibiting optical properties similar to human skin. Finally, we demonstrate the robustness of V-TEMP by evaluating the efficacy of elevated skin temperature detection on subject videos recorded in 1) laboratory controlled environments and 2) outside-the-lab environments. V-TEMP is beneficial in two ways; 1) it is non-contact-based, reducing the possibility of infection due to contact and 2) it is scalable, given the ubiquity of video-recording devices.


Assuntos
Temperatura Cutânea , Termômetros , Humanos , Temperatura , Gravação em Vídeo
5.
NPJ Digit Med ; 4(1): 91, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083724

RESUMO

This work investigates the estimation biases of remote photoplethysmography (rPPG) methods for pulse rate measurement across diverse demographics. Advances in photoplethysmography (PPG) and rPPG methods have enabled the development of contact and noncontact approaches for continuous monitoring and collection of patient health data. The contagious nature of viruses such as COVID-19 warrants noncontact methods for physiological signal estimation. However, these approaches are subject to estimation biases due to variations in environmental conditions and subject demographics. The performance of contact-based wearable sensors has been evaluated, using off-the-shelf devices across demographics. However, the measurement uncertainty of rPPG methods that estimate pulse rate has not been sufficiently tested across diverse demographic populations or environments. Quantifying the efficacy of rPPG methods in real-world conditions is critical in determining their potential viability as health monitoring solutions. Currently, publicly available face datasets accompanied by physiological measurements are typically captured in controlled laboratory settings, lacking diversity in subject skin tones, age, and cultural artifacts (e.g, bindi worn by Indian women). In this study, we collect pulse rate and facial video data from human subjects in India and Sierra Leone, in order to quantify the uncertainty in noncontact pulse rate estimation methods. The video data are used to estimate pulse rate using state-of-the-art rPPG camera-based methods, and compared against ground truth measurements captured using an FDA-approved contact-based pulse rate measurement device. Our study reveals that rPPG methods exhibit similar biases when compared with a contact-based device across demographic groups and environmental conditions. The mean difference between pulse rates measured by rPPG methods and the ground truth is found to be ~2% (1 beats per minute (b.p.m.)), signifying agreement of rPPG methods with the ground truth. We also find that rPPG methods show pulse rate variability of ~15% (11 b.p.m.), as compared to the ground truth. We investigate factors impacting rPPG methods and discuss solutions aimed at mitigating variance.

6.
Biomed Opt Express ; 9(2): 873-897, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552419

RESUMO

The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results.

7.
Comput Biol Med ; 66: 120-34, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26406881

RESUMO

Medication non-adherence is a major concern in the healthcare industry and has led to increases in health risks and medical costs. For many neurological diseases, adherence to medication regimens can be assessed by observing movement patterns. However, physician observations are typically assessed based on visual inspection of movement and are limited to clinical testing procedures. Consequently, medication adherence is difficult to measure when patients are away from the clinical setting. The authors propose a data mining driven methodology that uses low cost, non-wearable multimodal sensors to model and predict patients' adherence to medication protocols, based on variations in their gait. The authors conduct a study involving Parkinson's disease patients that are "on" and "off" their medication in order to determine the statistical validity of the methodology. The data acquired can then be used to quantify patients' adherence while away from the clinic. Accordingly, this data-driven system may allow for early warnings regarding patient safety. Using whole-body movement data readings from the patients, the authors were able to discriminate between PD patients on and off medication, with accuracies greater than 97% for some patients using an individually customized model and accuracies of 78% for a generalized model containing multiple patient gait data. The proposed methodology and study demonstrate the potential and effectiveness of using low cost, non-wearable hardware and data mining models to monitor medication adherence outside of the traditional healthcare facility. These innovations may allow for cost effective, remote monitoring of treatment of neurological diseases.


Assuntos
Aprendizado de Máquina , Adesão à Medicação , Transtornos dos Movimentos/terapia , Doença de Parkinson/tratamento farmacológico , Algoritmos , Coleta de Dados , Mineração de Dados , Marcha/efeitos dos fármacos , Humanos , Informática Médica , Modelos Estatísticos , Segurança do Paciente , Relações Médico-Paciente , Software , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA