Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 25(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245102

RESUMO

Ferrous ion co-catalyst enhancement of dilute-acid (DA) pretreatment of biomass is a promising technology for increasing the release of sugars from recalcitrant lignocellulosic biomass. However, due to the reductive status of ferrous ion and its susceptibility to oxidation with exposure to atmosphere, its effective application presumably requires anaerobic aqueous conditions created by nitrogen gas-purging, which adds extra costs. The objective of this study was to assess the effectiveness of oxidative iron ion, (i.e., ferric ion) as a co-catalyst in DA pretreatment of biomass, using an anaerobic chamber to strictly control exposure to oxygen during setup and post-pretreatment analyses. Remarkably, the ferric ions were found to be as efficient as ferrous ions in enhancing sugar release during DA pretreatment of biomass, which may be attributed to the observation that a major portion of the initial ferric ions were converted to ferrous during pretreatment. Furthermore, the detection of hydrogen peroxide in the liquors after DA/Fe ion pretreatment suggests that Fenton reaction chemistry was likely involved in DA/Fe ion pretreatments of biomass, contributing to the observed ferric and ferrous interchanges during pretreatment. These results help define the extent and specification requirements for applying iron ions as co-catalysts in DA pretreatments of biomass.


Assuntos
Biomassa , Compostos Férricos/química , Compostos Ferrosos/química , Lignina/química , Aerobiose , Anaerobiose , Catálise , Peróxido de Hidrogênio/química , Hidrólise , Ferro , Oxirredução , Oxigênio
2.
Plant Biotechnol J ; 14(10): 1998-2009, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26929151

RESUMO

Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.


Assuntos
Arabidopsis/metabolismo , Biomassa , Parede Celular/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Biocombustíveis , Parede Celular/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Biotechnol Lett ; 33(5): 961-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21287235

RESUMO

The analysis of structural glucan and xylan in lignocellulose was scaled down from original two-stage sulfuric acid hydrolysis methods (Moore WE and Johnson DB 1967 Procedures for the chemical analysis of wood and wood products. U.S. Forest Products Laboratory, U.S. Department of Agriculture., Madison, WI) and integrated into a recently-developed, high throughput pretreatment and enzymatic saccharification system. Novel 96×1.8 ml-well Hastelloy reactor plates (128×86×51 mm) based on previously described 96-well pretreatment reactor plates were paired with custom aluminum filler plates (128×86×18 mm) for use in Symyx Powdernium solids dispensing systems. The incorporation of glucose oxidase and xylose dehydrogenase linked assays to speed post-hydrolysis sugar analysis dramatically reduced the time for analysis of large lignocellulosic sample sets. The current system permits the determination of the glucan and xylan content of 96 replicates (per reactor plate) in under 6 h and parallel plate processing increases the analysis throughput substantially.


Assuntos
Glucanos/análise , Ensaios de Triagem em Larga Escala/métodos , Lignina/química , Xilanos/análise , Desidrogenases de Carboidrato/metabolismo , Glucose Oxidase/metabolismo
4.
Biotechnol Biofuels ; 14(1): 55, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663584

RESUMO

BACKGROUND: Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS: In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS: We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.

5.
Methods Mol Biol ; 2096: 61-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720147

RESUMO

As a robust perennial C4-type monocot plant and a native species to North America, switchgrass (Panicum virgatum) has been evaluated and designated as a strong candidate bioenergy crop by the U.S. DOE. Although genetic modifications of switchgrass have been used to successfully reduce the recalcitrance of switchgrass biomass for biofuel production, the generation of transgenic switchgrass is still a slow and laborious process. A transient protoplast system can provide an excellent platform to accelerate the selection of genes-of-interest for tailoring switchgrass biomass. However, partially due to the lack of the complete genomic information, the attempts to optimize the transient protoplast system for switchgrass remain scarce. In this chapter, we provide an improved protocol for switchgrass protoplast isolation, increased transformation efficiency using CsCl gradient ultracentrifugation-derived plasmid DNA and extended application of the transient switchgrass protoplast system to analyze protein expression using western blot.


Assuntos
Expressão Gênica , Panicum/genética , Folhas de Planta/metabolismo , Protoplastos/metabolismo , Panicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plasmídeos/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Esterilização , Transfecção , Ultracentrifugação
6.
Biotechnol Biofuels ; 12: 253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673288

RESUMO

BACKGROUND: Recently, exploring fermentative or chemical pathways that convert biomass-derived sugars to fuels/chemicals has attracted a lot of interest from many researchers. We are investigating a hydrocarbon pathway from mixed sugars via 5-hydroxymethyl furfural (HMF) and furfural intermediates. To achieve this goal, we must first convert glucose and xylose to HMF and furfural in favorable yields. Current processes to produce HMF/furfural generally involve the use of acid catalysts in biphasic systems or solvents such as ionic liquids. However, the yield from transforming glucose to HMF is lower than the yield of furfural from xylose. RESULTS: In this study, we present an efficient chemical pathway simultaneously transforming glucose and xylose to HMF and furfural via ketose intermediates, i.e., fructose and xylulose, which were generated from glucose and xylose via enzymatic isomerization. In the enzymatic isomerization, by adding sodium borate to complex with the ketoses, xylose conversion reached equilibrium after 2 h with a conversion of 91% and glucose conversion reached 84% after 4 h. By enzymatically isomerizing the aldoses to ketoses, the following dehydration reactions to HMF and furfural could be performed at low process temperatures (i.e., 110-120 °C) minimizing the side reactions of the sugars and limiting the degradation of furfurals to humins and carboxylic acids. At 120 °C, pH 0.5, and 15 min reaction time, mixed ketose sugars were converted to HMF and furfural in yields of 77% and 96%, respectively (based on starting aldose concentrations). CONCLUSION: Taken together, our results demonstrate that this combined biological and chemical process could be an effective pathway to simultaneously convert biomass-derived glucose and xylose to HMF and furfural, for use as intermediates in the production of hydrocarbons.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30847341

RESUMO

Dehydrins are a family of plant proteins that accumulate in response to dehydration stresses, such as low temperature, drought, high salinity, or during seed maturation. We have previously constructed cDNA libraries from Rhododendron catawbiense leaves of naturally non-acclimated (NA; leaf LT50, temperature that results in 50% injury of maximum, approximately -7°C) and cold-acclimated (CA; leaf LT50 approximately -50°C) plants and analyzed expressed sequence tags (ESTs). Five ESTs were identified as dehydrin genes. Their full-length cDNA sequences were obtained and designated as RcDhn 1-5. To explore their functionality vis-à-vis winter hardiness, their seasonal expression kinetics was studied at two levels. Firstly, in leaves of R. catawbiense collected from the NA, CA, and de-acclimated (DA) plants corresponding to summer, winter and spring, respectively. Secondly, in leaves collected monthly from August through February, which progressively increased freezing tolerance from summer through mid-winter. The expression pattern data indicated that RcDhn 1-5 had 6- to 15-fold up-regulation during the cold acclimation process, followed by substantial down-regulation during deacclimation (even back to NA levels for some). Interestingly, our data shows RcDhn 5 contains a histidine-rich motif near N-terminus, a characteristic of metal-binding dehydrins. Equally important, RcDhn 2 contains a consensus 18 amino acid sequence (i.e., ETKDRGLFDFLGKKEEEE) near the N-terminus, with two additional copies upstream, and it is the most acidic (pI of 4.8) among the five RcDhns found. The core of this consensus 18 amino acid sequence is a 11-residue amino acid sequence (DRGLFDFLGKK), recently designated in the literature as the F-segment (based on the pair of hydrophobic F residues it contains). Furthermore, the 208 orthologs of F-segment-containing RcDhn 2 were identified across a broad range of species in GenBank database. This study expands our knowledge about the types of F-segment from the literature-reported single F-segment dehydrins (FSKn) to two or three F-segment dehydrins: Camelina sativa dehydrin ERD14 as F2S2Kn type; and RcDhn 2 as F3SKn type identified here. Our results also indicate some consensus amino acid sequences flanking the core F-segment in dehydrins. Implications for these cold-responsive RcDhn genes in future genetic engineering efforts to improve plant cold hardiness are discussed.

8.
Biotechnol Bioeng ; 101(5): 913-25, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18781690

RESUMO

Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.


Assuntos
Parede Celular/metabolismo , Lignina/química , Zea mays/química , Zea mays/metabolismo , Biotecnologia/métodos , Dimerização , Calefação , Hidrólise , Imuno-Histoquímica , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Monossacarídeos/química , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Sulfúricos , Zea mays/ultraestrutura
9.
ChemSusChem ; 11(1): 285-291, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29136337

RESUMO

Super Lewis acids containing the triflate anion [e.g., Hf(OTf)4 , Ln(OTf)3 , In(OTf)3 , Al(OTf)3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al2 O3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids.


Assuntos
Hidrocarbonetos/síntese química , Ácidos de Lewis/química , Lignina/química , Metais/química , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Mesilatos/química , Rutênio/química
10.
Biotechnol Prog ; 23(6): 1333-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17973399

RESUMO

Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.


Assuntos
Biomassa , Celulases/metabolismo , Celulose/química , Lignina/biossíntese , Zea mays/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Temperatura
11.
Bioresour Technol ; 243: 474-480, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28689140

RESUMO

The reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165°C for 10min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80kg/hm2 and cake permeability of 15x10-15.


Assuntos
Carboidratos , Zea mays , Filtração , Hidrólise , Ácidos Sulfúricos , Xilose
12.
ChemSusChem ; 10(8): 1846-1856, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225212

RESUMO

The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al2 O3 and HY zeolite.


Assuntos
Alcanos/química , Lignina/química , Oxigênio/química , Rutênio/química , Zeolitas/química , Catálise , Microscopia Eletrônica de Transmissão e Varredura , Difração de Raios X
13.
Plant Methods ; 13: 113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270209

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum), a robust perennial C4-type grass, has been evaluated and designated as a model bioenergy crop by the U.S. DOE and USDA. Conventional breeding of switchgrass biomass is difficult because it displays self-incompatible hindrance. Therefore, direct genetic modifications of switchgrass have been considered the more effective approach to tailor switchgrass with traits of interest. Successful transformations have demonstrated increased biomass yields, reduction in the recalcitrance of cell walls and enhanced saccharification efficiency. Several tissue culture protocols have been previously described to produce transgenic switchgrass lines using different nutrient-based media, co-cultivation approaches, and antibiotic strengths for selection. RESULTS: After evaluating the published protocols, we consolidated these approaches and optimized the process to develop a more efficient protocol for producing transgenic switchgrass. First, seed sterilization was optimized, which led to a 20% increase in yield of induced calluses. Second, we have selected a N6 macronutrient/B5 micronutrient (NB)-based medium for callus induction from mature seeds of the Alamo cultivar, and chose a Murashige and Skoog-based medium to regenerate both Type I and Type II calluses. Third, Agrobacterium-mediated transformation was adopted that resulted in 50-100% positive regenerated transformants after three rounds (2 weeks/round) of selection with antibiotic. Genomic DNA PCR, RT-PCR, Southern blot, visualization of the red fluorescent protein and histochemical ß-glucuronidase (GUS) staining were conducted to confirm the positive switchgrass transformants. The optimized methods developed here provide an improved strategy to promote the production and selection of callus and generation of transgenic switchgrass lines. CONCLUSION: The process for switchgrass transformation has been evaluated and consolidated to devise an improved approach for transgenic switchgrass production. With the optimization of seed sterilization, callus induction, and regeneration steps, a reliable and effective protocol is established to facilitate switchgrass engineering.

14.
Biotechnol Biofuels ; 10: 283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209415

RESUMO

In the shadow of a burgeoning biomass-to-fuels industry, biological conversion of lignocellulose to fermentable sugars in a cost-effective manner is key to the success of second-generation and advanced biofuel production. For the effective comparison of one cellulase preparation to another, cellulase assays are typically carried out with one or more engineered cellulase formulations or natural exoproteomes of known performance serving as positive controls. When these formulations have unknown composition, as is the case with several widely used commercial products, it becomes impossible to compare or reproduce work done today to work done in the future, where, for example, such preparations may not be available. Therefore, being a critical tenet of science publishing, experimental reproducibility is endangered by the continued use of these undisclosed products. We propose the introduction of standard procedures and materials to produce specific and reproducible cellulase formulations. These formulations are to serve as yardsticks to measure improvements and performance of new cellulase formulations.

15.
Appl Biochem Biotechnol ; 129-132: 509-27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16915666

RESUMO

The transport of catalysts (chemicals and enzymes) within plant biomass is believed to be a major bottleneck during thermochemical pretreatment and enzymatic conversion of lignocellulose. Subjecting biomass to size reduction and mechanical homogenization can reduce catalyst transport limitations; however, such processing adds complexity and cost to the overall process. Using high-resolution light microscopy, we have monitored the transport of an aqueous solution of Direct Blue-I (DB-I) dye through intact corn internodes under a variety of impregnation conditions. DB-I is a hydrophilic anionic dye with affinity for cellulose. This model system has enabled us to visualize likely barriers and mechanisms of catalyst transport in corn stems. Microscopic images were compared with calculated degrees of saturation (i.e., volume fraction of internode void space occupied by dye solution) to correlate impregnation strategies with dye distribution and transport mechanisms. Results show the waxy rind exterior and air trapped within individual cells to be the major barriers to dye transport, whereas the vascular bundles, apoplastic continuum (i.e., the intercellular void space at cell junctions), and fissures formed during the drying process provided the most utilized pathways for transport. Although representing only 20-30% of the internode volume, complete saturation of the apoplast and vascular bundles by fluid allowed dye contact with a majority of the cells in the internode interior.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Meios de Cultivo Condicionados/química , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Zea mays/química , Zea mays/metabolismo , Compostos Azo , Transporte Biológico Ativo/fisiologia , Catálise , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Componentes Aéreos da Planta/citologia , Pressão , Temperatura , Azul Tripano , Zea mays/citologia
16.
Front Plant Sci ; 7: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858740

RESUMO

It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.

17.
Biotechnol Biofuels ; 9: 256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895710

RESUMO

BACKGROUND: Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. RESULTS: Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have proven to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. CONCLUSION: We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. We believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.

18.
Biotechnol Biofuels ; 9: 213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766117

RESUMO

BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/days continuous reactor. The reactor systems examined were an automated solvent extractor (ASE), steam explosion reactor (SER), ZipperClave®Reactor (ZCR), and large continuous horizontal screw reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions and at different reactor scales. RESULTS: The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. The maximum total sugar yields for the ASE and LHR were [Formula: see text], while [Formula: see text] was the optimum observed in the ZipperClave. CONCLUSIONS: The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems. Additionally, using a severity factor approach to optimization was found to be inadequate compared to a multivariate optimization method. Finally, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of mechanical disruption during pretreatment to improvement of enzymatic digestibility.

19.
Biotechnol Biofuels ; 9: 225, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777626

RESUMO

BACKGROUND: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). RESULTS: The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. CONCLUSIONS: This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.

20.
Biotechnol Biofuels ; 8: 173, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26516346

RESUMO

BACKGROUND: A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). RESULTS: A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. CONCLUSIONS: The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA