Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Analyst ; 149(6): 1727-1737, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38375547

RESUMO

Understanding the influence of oxygen tension on cellular functions and behaviors is crucial for investigating various physiological and pathological conditions. In vitro cell culture models, particularly those based on hydrogel extracellular matrices, have been developed to study cellular responses in specific oxygen microenvironments. However, accurately characterizing oxygen tension variations with great spatiotemporal resolutions, especially in three dimensions, remains challenging. This paper presents an approach for rapid time-lapse 3D oxygen tension measurements in hydrogels using a widely available inverted fluorescence microscope. Oxygen-sensitive fluorescent microbeads and widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) are utilized for oxygen tension estimation. To incorporate the third dimension, a motorized sample stage is implanted that enables automated image acquisition in the vertical direction. A machine learning algorithm based on K-means clustering is employed for microbead position identification. Using an upside-down microfluidic device, 3D oxygen gradients are generated within a hydrogel sample, and z-stack images are acquired using the FD-FLIM system. Analyses of the acquired images, involving microbead position identification, lifetime calculation, and oxygen tension conversion, are then performed offline. The results demonstrate the functionality of the developed approach for rapid time-lapse 3D oxygen tension measurements in hydrogels. Furthermore, the 3D oxygen tension adjacent to a tumor spheroid within a hydrogel during media exchange is characterized. The results further confirm that the 3D spatiotemporal oxygen tension profiles can be successfully measured quantitatively using the established setup and analysis process and that the approach may have great potential for investigating cellular activities within oxygen microenvironments.


Assuntos
Técnicas de Cultura de Células , Oxigênio , Imagem com Lapso de Tempo , Microscopia de Fluorescência/métodos , Hidrogéis
2.
Small ; 17(15): e2006091, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480473

RESUMO

Formation of 3D networks is a crucial process for endothelial cells during development of primary blood vessels under both normal and pathological conditions. In order to investigate effects of oxygen microenvironment and matrix composition on the 3D network formation, an upside-down microfluidic cell culture device capable of generating oxygen gradients is developed in this paper. In cell experiments, network formation of human umbilical vein endothelial cells (HUVECs) within fibrinogen-based hydrogels with different concentrations of hyaluronic acid (HA) is systematically studied. In addition, five different oxygen microenvironments (uniform normoxia, 5%, and 1% O2 ; oxygen gradients under normoxia and 5% O2 ) are also applied for the cell culture. The generated oxygen gradients are characterized based on fluorescence lifetime measurements. The experimental results show increased 3D cell network length when the cells are cultured under the oxygen gradients within the hydrogels with the HA addition suggesting their roles in promoting network formation. Furthermore, the formed networks tend to align along the direction of the oxygen gradients indicating the presence of gradient-driven cellular response. The results demonstrate that the developed upside-down microfluidic device can provide an advanced platform to investigate 3D cell culture under the controlled oxygen microenvironments for various biomedical studies in vitro.


Assuntos
Hidrogéis , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxigênio/análise
3.
Mol Cancer ; 18(1): 42, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885232

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a poor prognostic breast cancer with the highest mutations and limited therapeutic choices. Cytokine networking between cancer cells and the tumor microenvironment (TME) maintains the self-renewing subpopulation of breast cancer stem cells (BCSCs) that mediate tumor heterogeneity, resistance and recurrence. Immunotherapy of those factors combined with targeted therapy or chemoagents may advantage TNBC treatment. RESULTS: We found that the oncogene Multiple Copies in T-cell Malignancy 1 (MCT-1/MCTS1) expression is a new poor-prognosis marker in patients with aggressive breast cancers. Overexpressing MCT-1 perturbed the oncogenic breast epithelial acini morphogenesis and stimulated epithelial-mesenchymal transition and matrix metalloproteinase activation in invasive TNBC cells, which were repressed after MCT-1 gene silencing. As mammary tumor progression was promoted by oncogenic MCT-1 activation, tumor-promoting M2 macrophages were enriched in TME, whereas M2 macrophages were decreased and tumor-suppressive M1 macrophages were increased as the tumor was repressed via MCT-1 knockdown. MCT-1 stimulated interleukin-6 (IL-6) secretion that promoted monocytic THP-1 polarization into M2-like macrophages to increase TNBC cell invasiveness. In addition, MCT-1 elevated the soluble IL-6 receptor levels, and thus, IL-6R antibodies antagonized the effect of MCT-1 on promoting M2-like polarization and cancer cell invasion. Notably, MCT-1 increased the features of BCSCs, which were further advanced by IL-6 but prevented by tocilizumab, a humanized IL-6R antibody, thus MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization. CONCLUSIONS: The MCT-1 pathway is a novel and promising therapeutic target for TNBC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Transição Epitelial-Mesenquimal , Interleucina-6/metabolismo , Macrófagos/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas/metabolismo , Receptores de Interleucina-6/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose , Biomarcadores Tumorais , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/genética , Prognóstico , Receptores de Interleucina-6/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Analyst ; 144(11): 3494-3504, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31062784

RESUMO

An oxygen gradient is a key variable influencing various biological activities in vivo, such as tissue repair and tumor growth. To study the phenomenon, in vitro cell studies using microfluidic devices capable of generating oxygen gradients have been developed recently. However, it is challenging to accurately measure the gradient profiles in devices. The traditional fluorescence intensity-based method suffers from the difficulty of accurate measurement due to background fluorescence artefacts. In addition, it is hard to obtain accurate calibration conditions because of the difficulties to achieve a fully depleted and saturated oxygen concentrations in the devices. To overcome these difficulties, a widefield frequency domain fluorescence imaging microscopy (FD-FLIM) system was constructed and utilized to accurately measure oxygen gradient profiles in a microfluidic device in this paper. Since lifetime-based measurements do not solely depend on intensity variations, oxygen calibration processes are amiable and the measured oxygen concentrations can be more accurate. The performance of the FD-FLIM system was validated by comparing the experimental and simulation results in microfluidic devices with different geometries. The experimental results show that the oxygen gradients generated from the chemical reaction method can provide more hypoxic oxygen conditions compared to the gradients created by the gas flowing method. Owing to the advantages provided by the widefield microscopy technique, the image acquisition time can be significantly reduced resulting in less photobleaching for time-lapsed imaging applications. Consequently, the measurement technique developed in this paper is an efficient tool, which can greatly help scientists to better study biological activities under various oxygen conditions.

5.
Anal Chem ; 90(3): 2317-2325, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29293313

RESUMO

This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 µL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.

6.
Analyst ; 140(21): 7355-65, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26381390

RESUMO

This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Microfluídica/instrumentação , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Citocinas/metabolismo , Difusão , Células Epiteliais/citologia , Desenho de Equipamento , Fibroblastos/citologia , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Células-Tronco/citologia
7.
Biosensors (Basel) ; 14(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392015

RESUMO

Oxygen consumption has been used to evaluate various cellular activities. In addition, three-dimensional (3D) spheroids have been broadly exploited as advanced in vitro cell models for various biomedical studies due to their capability of mimicking 3D in vivo microenvironments and cell arrangements. However, monitoring the oxygen consumption of live 3D spheroids poses challenges because existing invasive methods cause structural and cell damage. In contrast, optical methods using fluorescence labeling and microscopy are non-invasive, but they suffer from technical limitations like high cost, tedious procedures, and poor signal-to-noise ratios. To address these challenges, we developed a microfluidic platform for uniform-sized spheroid formation, handling, and culture. The platform is further integrated with widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) to efficiently characterize the lifetime of an oxygen-sensitive dye filling the platform for oxygen consumption characterization. In the experiments, osteosarcoma (MG-63) cells are exploited as the spheroid model and for the oxygen consumption analysis. The results demonstrate the functionality of the developed approach and show the accurate characterization of the oxygen consumption of the spheroids in response to drug treatments. The developed approach possesses great potential to advance spheroid metabolism studies with single-spheroid resolution and high sensitivity.


Assuntos
Microfluídica , Esferoides Celulares , Esferoides Celulares/química , Esferoides Celulares/metabolismo , Microscopia de Fluorescência , Oxigênio/análise , Consumo de Oxigênio
8.
Pharmaceutics ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399278

RESUMO

Oral cancer represents a global health burden, necessitating novel therapeutic strategies. Photodynamic and photothermal therapies using indocyanine green (ICG) have shown promise due to their distinctive near-infrared (NIR) light absorption characteristics and FDA-approved safety profiles. This study develops ICG-loaded liposomes (Lipo-ICGs) to further explore their potential in oral cancer treatments. We synthesized and characterized the Lipo-ICGs, conducted in vitro cell culture experiments to assess cellular uptake and photodynamic/photothermal effects, and performed in vivo animal studies to evaluate their therapeutic efficacy. Quantitative cell apoptosis and gene expression variation were further characterized using flow cytometry and RNA sequencing, respectively. Lipo-ICGs demonstrated a uniform molecular weight distribution among particles. The in vitro studies showed a successful internalization of Lipo-ICGs into the cells and a significant photodynamic treatment effect. The in vivo studies confirmed the efficient delivery of Lipo-ICGs to tumor sites and successful tumor growth inhibition following photodynamic therapy. Moreover, light exposure induced a time-sensitive photothermal effect, facilitating the further release of ICG, and enhancing the treatment efficacy. RNA sequencing data showed significant changes in gene expression patterns upon Lipo-ICG treatment, suggesting the activation of apoptosis and ferroptosis pathways. The findings demonstrate the potential of Lipo-ICGs as a therapeutic tool for oral cancer management, potentially extending to other cancer types.

9.
Biomicrofluidics ; 17(5): 054105, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840539

RESUMO

Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.

10.
Mater Today Bio ; 21: 100703, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37483382

RESUMO

Sprouting angiogenesis is an essential process for expanding vascular systems under various physiological and pathological conditions. In this paper, a microfluidic device capable of integrating a hydrogel matrix for cell culture and generating stable oxygen gradients is developed to study the sprouting angiogenesis of endothelial cells under combinations of oxygen gradients and co-culture of fibroblast cells. The endothelial cells can be cultured as a monolayer endothelium inside the device to mimic an existing blood vessel, and the hydrogel without or with fibroblast cells cultured in it provides a matrix next to the formed endothelium for three-dimensional sprouting of the endothelial cells. Oxygen gradients can be stably established inside the device for cell culture using the spatially-confined chemical reaction method. Using the device, the sprouting angiogenesis under combinations of oxygen gradients and co-culture of fibroblast cells is systematically studied. The results show that the oxygen gradient and the co-culture of fibroblast cells in the hydrogel can promote sprouting of the endothelial cells into the hydrogel matrix by altering cytokines in the culture medium and the physical properties of the hydrogel. The developed device provides a powerful in vitro model to investigate sprouting angiogenesis under various in vivo-like microenvironments.

11.
APL Bioeng ; 7(1): 016117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006781

RESUMO

Fibrosis and fibroblast activation usually occur in the tissues surrounding a malignant tumor; therefore, anti-fibrotic drugs are used in addition to chemotherapy. A reliable technique for evaluating the combined effects of anti-fibrotic drugs and anticancer drugs would be beneficial for the development of an appropriate treatment strategy. In this study, we manufactured a three-dimensional (3D) co-culture system of fibroblasts and lung cancer cell spheroids in Matrigel supplemented with fibrin (fibrin/Matrigel) that simulated the tissue microenvironment around a solid tumor. We compared the efficacy of an anticancer drug (cisplatin) with or without pretreatments of two anti-fibrotic drugs, nintedanib and pirfenidone, on the growth and invasion of cancer cells co-cultured with fibroblasts. The results showed that the addition of nintedanib improved cisplatin's effects on suppressing the growth of cancer cell spheroids and the invasion of cancer cells. In contrast, pirfenidone did not enhance the anticancer activity of cisplatin. Nintedanib also showed higher efficacy than pirfenidone in reducing the expression of four genes in fibroblasts associated with cell adhesion, invasion, and extracellular matrix degradation. This study demonstrated that the 3D co-cultures in fibrin/Matrigel would be useful for assessing the effects of drug combinations on tumor growth and invasion.

12.
ACS Appl Mater Interfaces ; 15(12): 15047-15058, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36916875

RESUMO

Sprouting angiogenesis is orchestrated by an intricate balance of biochemical and mechanical cues in the local tissue microenvironment. Interstitial flow has been established as a potent regulator of angiogenesis. Similarly, extracellular matrix (ECM) physical properties, such as stiffness and microarchitecture, have also emerged as important mediators of angiogenesis. However, the interplay between interstitial flow and ECM physical properties in the initiation and control of angiogenesis is poorly understood. Using a three-dimensional (3D) microfluidic tissue analogue of angiogenic sprouting with defined interstitial flow superimposed over ECM with well-characterized physical properties, we found that the addition of hyaluronan (HA) to collagen-based matrices significantly enhances sprouting induced by interstitial flow compared to responses in collagen-only hydrogels. We confirmed that both the stiffness and matrix pore size of collagen-only hydrogels were increased by the addition of HA. Interestingly, interstitial flow-potentiated sprouting responses in collagen/HA matrices were not affected when functionally blocking the HA receptor CD44. In contrast, enzymatic depletion of HA in collagen/HA matrices with hyaluronidase (HAdase) resulted in decreased stiffness, pore size, and interstitial flow-mediated sprouting to the levels observed in collagen-only matrices. Taken together, these results suggest that HA enhances interstitial flow-mediated angiogenic sprouting through its alterations to collagen ECM stiffness and pore size.


Assuntos
Sinais (Psicologia) , Matriz Extracelular , Matriz Extracelular/química , Colágeno/química , Fenômenos Fisiológicos Cardiovasculares , Hidrogéis/farmacologia
13.
Biomed Microdevices ; 14(2): 313-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22057945

RESUMO

Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Esferoides Celulares/metabolismo
14.
Biotechnol Bioeng ; 109(5): 1293-304, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22161651

RESUMO

We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types.


Assuntos
Esferoides Celulares , Animais , Técnicas de Cocultura/métodos , Colorimetria/métodos , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Tumorais Cultivadas
15.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421149

RESUMO

Oxygen plays important roles in regulating various biological activities under physiological and pathological conditions. However, the response of cells facing temporal variation in oxygen microenvironments has seldom been studied due to technical limitations. In this paper, an integrated approach to studying hypoxic response under cyclic oxygen gradients is developed. In the experiments, a cell culture system based on a microfluidic device is constructed to generate cyclic oxygen gradients with desired periods by alternately introducing gases with specific compositions into the microfluidic channels next to the cell culture channel separated by thin channel walls. Observation of the hypoxic responses is performed using real-time fluorescence imaging of dyes sensitive to extra- and intracellular oxygen tensions as well as intracellular calcium concentrations. Cellular hypoxic responses of human aortic smooth muscle cells (AoSMCs) and lung carcinoma epithelium (A549) cells, including intracellular oxygen and calcium levels, are measured. The results show that the two types of cells have different hypoxic responses to the applied cyclic oxygen gradients. With the capability of real-time cellular response monitoring under cyclic oxygen gradients, the developed approach provides a useful scheme to investigate hypoxic responses in vitro under microenvironments mimicking various in vivo physiological and pathological conditions.


Assuntos
Dispositivos Lab-On-A-Chip , Oxigênio , Humanos , Cálcio , Hipóxia , Imagem Óptica
16.
Front Bioeng Biotechnol ; 10: 869184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464720

RESUMO

Reactive oxygen species (ROS), a number of reactive molecules and free radicals derived from molecular oxygen, are generated as by-products during mitochondrial electron transport within cells. Physiologically, cells are capable of metabolizing the ROS exploiting specific mechanisms. However, if excessive ROS accumulate inside the cells, it will cause the cells apoptosis or necrosis. Hydrogen peroxide (H2O2) is one of the essential ROS often participating in chemical reactions in organisms and regulating homeostasis in the body. Therefore, rapid and sensitive detection of H2O2 is a significant task in cell biology research. Furthermore, it has been found that cells cultured in different formats can result in different cellular responses and biological activities. In order to investigate the H2O2 secretion from the cells cultured in different formats, a hydrogel-based substrate is exploited to separate relatively large molecular (e.g., proteins) for direct measurement of H2O2 secreted from living cells in complete cell culture medium containing serum. The substrate takes advantage of the localized surface plasmon resonance (LSPR) method based on enzyme immunoprecipitation. In addition, the H2O2 secreted from the cells cultured in different dimensions (suspension of single cells and three-dimensional cell spheroids) treated with identical drugs is measured and compared. The spheroid samples can be prepared with ample amount using a designed microfluidic device with precise control of size. The results show that the H2O2 secretion from the cells are great affected by their culture formats.

17.
Acta Biomater ; 145: 316-328, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367381

RESUMO

Endothelium lining interior surface of blood vessels experiences various physical stimulations in vivo. Its physical properties, especially elasticity, play important roles in regulating the physiological functions of vascular systems. In this paper, an integrated approach is developed to characterize the anisotropic elasticity of the endothelium under physiological-level fluid shear stress. A pressure sensor-embedded microfluidic device is developed to provide fluid shear stress on the perfusion-cultured endothelium and to measure transverse in-plane elasticities in the directions parallel and perpendicular to the flow direction. Biological atomic force microscopy (Bio-AFM) is further exploited to measure the vertical elasticity of the endothelium in its out-of-plane direction. The results show that the transverse elasticity of the endothelium in the direction parallel to the perfusion culture flow direction is about 70% higher than that in the direction perpendicular to the flow direction. Moreover, the transverse elasticities of the endothelium are estimated to be approximately 120 times larger than the vertical one. The results indicate the effects of fluid shear stress on the transverse elasticity anisotropy of the endothelium, and the difference between the elasticities in transverse and vertical directions. The quantitative measurement of the endothelium anisotropic elasticity in different directions at the tissue level under the fluid shear stress provides biologists insightful information for the advanced vascular system studies from biophysical and biomaterial viewpoints. STATEMENT OF SIGNIFICANCE: In this paper, we take advantage an integrated approach combining microfluidic devices and biological atomic force microscopy (Bio-AFM) to characterize anisotropic elasticities of endothelia with and without fluidic shear stress application. The microfluidic devices are exploited to conduct perfusion cell culture of the endothelial cells, and to estimate the in-plane elasticities of the endothelium in the direction parallel and perpendicular to the shear stress. In addition, the Bio-AFM is utilized for characterization of the endothelium morphology and vertical elasticity. The measurement results demonstrate the very first anisotropic elasticity quantification of the endothelia. Furthermore, the study provides insightful information bridging the microscopic sing cell and macroscopic organ level studies, which can greatly help to advance vascular system research from material perspective.


Assuntos
Células Endoteliais , Endotélio Vascular , Anisotropia , Elasticidade , Endotélio , Estresse Mecânico
18.
J Thromb Haemost ; 20(8): 1887-1899, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490411

RESUMO

BACKGROUND: Cav 3.2 is a T-type calcium channel that causes low-threshold exocytosis. T-type calcium channel blockers reduce platelet granule exocytosis and aggregation. However, studies of the T-type calcium channel in platelets are lacking. OBJECTIVE: To examine the expression and role of Cav 3.2 in platelet function. METHODS: Global Cav 3.2-/- and platelet-specific Cav 3.2-/- mice and littermate controls were used for this study. Western blot analysis was used to detect the presence of Cav 3.2 and activation of the calcium-responsive protein extracellular signal-regulated kinase (ERK). Fura-2 dye was used to assess platelet calcium. Flow cytometry and light transmission aggregometry were used to evaluate platelet activation markers and aggregation, respectively. FeCl3 -induced thrombosis and a microfluidic flow device were used to assess in vivo and ex vivo thrombosis, respectively. RESULTS: Cav 3.2 was expressed in mouse platelets. As compared with wild-type controls, Cav 3.2-/- mouse platelets showed reduced calcium influx. Similarly, treatment with the T-type calcium channel inhibitor Ni2+ decreased the calcium influx in wild-type platelets. As compared with controls, both Cav 3.2-/- and Ni2+ -treated wild-type platelets showed reduced activation of ERK. ATP release, P-selectin exposure, and αIIb ß3 activation were reduced in Cav 3.2-/- and Ni2+ -treated wild-type platelets, as was platelet aggregation. On in vivo and ex vivo thrombosis assay, Cav3.2 deletion caused delayed thrombus formation. However, tail bleeding assay showed intact hemostasis. CONCLUSION: These results suggest that Cav 3.2 is required for the optimal activation of platelets.


Assuntos
Canais de Cálcio Tipo T , Ativação Plaquetária , Trombose , Animais , Plaquetas/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Camundongos , Camundongos Knockout , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo
19.
Talanta ; 236: 122882, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635262

RESUMO

Oxygen is necessary for cellular respiration in aerobic organisms. In animals, such as human, inhaled oxygen moves from the alveoli to the blood through alveolar epithelium into pulmonary capillaries. Up to now, different studies have been reported to examine experimental oxygen diffusivity for simple membrane or single-celled organisms; however, devices capable of precisely characterizing oxygen transportation through cell layers with dimensions similar to their physiological ones have not been developed. In this study, we establish an integrated approach exploiting a multi-layer microfluidic device and relative fluorescence lifetime detection apparatus to reliably measure oxygen diffusivity through a cell layer. In the experiments, different types of cells, including A549 and 3T3 cell lines, lung stem/progenitor cells, and the differentiated type I pneumocyte-like cells, are used to form cell layers within the devices for their oxygen diffusivity evaluation. A distinct facilitated oxygen transportation behavior of the differentiated type I pneumocyte-like cells that has never been discussed before is identified using the approach. The study offered a new in vitro approach to evaluate the oxygen diffusivity across cell layers in a microfluidic device and open a door to construct more physiologically meaningful in vitro model system to study respiratory systems.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Células Epiteliais Alveolares , Animais , Humanos , Oxigênio
20.
Analyst ; 136(3): 473-8, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20967331

RESUMO

Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Concentração Osmolar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA