Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38653724

RESUMO

Colicin (Col) plasmid contains colicin encoding genes arranged in an operon controlled by an SOS inducible promoter. Therefore, any external stresses to the host cell can induce the expression of the downstream genes in the Col operon, including a lysis gene. The lysis protein is involved in the extracellular release of colicin through lysis of the producer cells, which causes a decline in culture turbidity. However, it is not yet known that E. coli cells with the native pColE9-J plasmid hold the same level of cell death at the population level following a set of induced conditions. In this study, using a mitomycin C sensitivity assay along with a live dead staining method of detection, we showed that the native pColE9-J plasmid, which unusually carries an extended Col operon (ColE9) containing two lysis genes, did not confer a rapid decline in the culture turbidity following induction with mitomycin C. Interestingly a subset of the cells suffered perturbation of their outer membrane, which was not observed from single lysis mutant (∆celE or ∆celI) cells. This observed heterogeneity in the colicin E9 release leading to differential outer membrane perforation may bring a competitive advantage to these cells in a mixed population.


Assuntos
Colicinas , Escherichia coli , Mitomicina , Plasmídeos , Colicinas/metabolismo , Colicinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Mitomicina/farmacologia , Plasmídeos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Óperon , Antibacterianos/farmacologia
2.
Infect Genet Evol ; 123: 105632, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964564

RESUMO

OBJECTIVES: The aim of this study was to understand the status of extensively drug-resistance (XDR) genotype in Salmonella enterica serotype Typhi (S. Typhi) recovered during the pre to post COVID-19 pandemic period using Multiplex PCR. METHODS: A longitudinal descriptive study was carried out during five years. Antibiotic susceptibility testing was performed according to the Clinical Laboratory Standards Institute antimicrobial susceptibility testing guidelines. The identification of S. Typhi, the detection of their high-risk lineages and XDR genotype was done using single nucleotide polymorphism-based multiplex PCR. RESULTS: A total of four hundred nine (n = 409) S. Typhi isolates were recovered during pre to post COVID-19 pandemic period. Among them, 30.81% belonged to the pre COVID-19 period while 69.19% to the post COVID-19 period. Different trends in antibiotic resistance in S. Typhi isolates with high prevalence of XDR-S. Typhi were observed. However, there was comparatively different frequency of their occurrence among the S. Typhi isolates recovered during pre to post COVID-19 pandemic period. Multiplex PCR showed that the majority of S. Typhi isolates were the H58 haplotype or genotype 4.3.1 which contained XDR genotype. CONCLUSIONS: The increasing episodes of XDR-S. Typhi causing typhoid fever in endemic areas is alarming. The antibiotic resistance in food and water borne pathogens greatly contribute to the dissemination of the antimicrobial resistance in pathogenic bacteria, which has now been considered as a global concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA