Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Allergy Clin Immunol ; 147(2): 694-703.e12, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32717253

RESUMO

BACKGROUND: Acute respiratory viral infections are a major cause of respiratory morbidity and mortality, especially in patients with preexisting lung diseases such as asthma. Toll-like receptors are critical in the early detection of viruses and in activating innate immunity in the respiratory mucosa, but there is no reliable and convenient method by which respiratory mucosal innate immune responses can be measured. OBJECTIVE: We sought to assess in vivo immune responses to an innate stimulus and compare responsiveness between healthy volunteers and volunteers with allergy. METHODS: We administered the Toll-like receptor 7/8 agonist resiquimod (R848; a synthetic analogue of single-stranded RNA) or saline by nasal spray to healthy participants without allergy (n = 12), those with allergic rhinitis (n = 12), or those with allergic rhinitis with asthma (n = 11). Immune mediators in blood and nasal fluid and mucosal gene expression were monitored over time. RESULTS: R848 was well tolerated and significantly induced IFN-α2a, IFN-γ, proinflammatory cytokines (TNF-α, IL-2, IL-12p70), and chemokines (CXCL10, C-C motif chemokine ligand [CCL]2, CCL3, CCL4, and CCL13) in nasal mucosal fluid, without causing systemic immune activation. Participants with allergic rhinitis or allergic rhinitis with asthma had increased IFN-α2a, CCL3, and CCL13 responses relative to healthy participants; those with asthma had increased induction of IFN-stimulated genes DExD/H-box helicase 58, MX dynamin-like GTPase 1, and IFN-induced protein with tetratricopeptide repeats 3. CONCLUSIONS: Responses to nasal delivery of R848 enables simple assessment of mucosal innate responsiveness, revealing that patients with allergic disorders have an increased nasal mucosal IFN and chemokine response to the viral RNA analogue R848. This highlights that dysregulated innate immune responses of the nasal mucosa in allergic individuals may be important in determining the outcome of viral exposure.


Assuntos
Asma/imunologia , Imidazóis/farmacologia , Imunidade Inata/imunologia , Mucosa Nasal/imunologia , Rinite Alérgica/imunologia , Adulto , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Interferons/imunologia , Masculino , Proteínas Quimioatraentes de Monócitos/imunologia , Mucosa Nasal/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
2.
Crit Care ; 25(1): 74, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608030

RESUMO

BACKGROUND: Biomarkers can be used to detect the presence of endothelial and/or alveolar epithelial injuries in case of ARDS. Angiopoietin-2 (Ang-2), soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), P-selectin and E-selectin are biomarkers of endothelial injury, whereas the receptor for advanced glycation end-products (RAGE) reflects alveolar epithelial injury. The aims of this study were to evaluate whether the plasma concentration of the above-mentioned biomarkers was different 1) in survivors and non-survivors of COVID-19-related ARDS and 2) in COVID-19-related and classical ARDS. METHODS: This prospective study was performed in two COVID-19-dedicated Intensive Care Units (ICU) and one non-COVID-19 ICU at Ferrara University Hospital. A cohort of 31 mechanically ventilated patients with COVID-19 ARDS and a cohort of 11 patients with classical ARDS were enrolled. Ang-2, ICAM-1, VCAM-1, P-selectin, E-selectin and RAGE were determined with a bead-based multiplex immunoassay at three time points: inclusion in the study (T1), after 7 ± 2 days (T2) and 14 ± 2 days (T3). The primary outcome was to evaluate the plasma trend of the biomarker levels in survivors and non-survivors. The secondary outcome was to evaluate the differences in respiratory mechanics variables and gas exchanges between survivors and non-survivors. Furthermore, we compared the plasma levels of the biomarkers at T1 in patients with COVID-19-related ARDS and classical ARDS. RESULTS: In COVID-19-related ARDS, the plasma levels of Ang-2 and ICAM-1 at T1 were statistically higher in non-survivors than survivors, (p = 0.04 and p = 0.03, respectively), whereas those of P-selectin, E-selectin and RAGE did not differ. Ang-2 and ICAM-1 at T1 were predictors of mortality (AUROC 0.650 and 0.717, respectively). At T1, RAGE and P-selectin levels were higher in classical ARDS than in COVID-19-related ARDS. Ang-2, ICAM-1 and E-selectin were lower in classical ARDS than in COVID-19-related ARDS (all p < 0.001). CONCLUSIONS: COVID-19 ARDS is characterized by an early pulmonary endothelial injury, as detected by Ang-2 and ICAM-1. COVID-19 ARDS and classical ARDS exhibited a different expression of biomarkers, suggesting different pathological pathways. Trial registration NCT04343053 , Date of registration: April 13, 2020.


Assuntos
Biomarcadores/análise , Lesão Pulmonar/diagnóstico , Respiração Artificial/efeitos adversos , Idoso , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/sangue , Área Sob a Curva , COVID-19/sangue , COVID-19/prevenção & controle , Estudos de Coortes , Selectina E/análise , Selectina E/sangue , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Molécula 1 de Adesão Intercelular/análise , Molécula 1 de Adesão Intercelular/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/sangue , Selectina-P/análise , Selectina-P/sangue , Estudos Prospectivos , Curva ROC , Respiração Artificial/normas , Respiração Artificial/estatística & dados numéricos , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Versicanas/análise , Versicanas/sangue , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/sangue
3.
Eur Respir J ; 54(4)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391224

RESUMO

BACKGROUND: Patients with asthma are at risk of hospitalisation with influenza, but the reasons for this predisposition are unknown. STUDY SETTING: A prospective observational study of adults with PCR-confirmed influenza in 11 UK hospitals, measuring nasal, nasopharyngeal and systemic immune mediators and whole-blood gene expression. RESULTS: Of 133 admissions, 40 (30%) had previous asthma; these were more often female (70% versus 38.7%, OR 3.69, 95% CI 1.67-8.18; p=0.0012), required less mechanical ventilation (15% versus 37.6%, Chi-squared 6.78; p=0.0338) and had shorter hospital stays (mean 8.3 versus 15.3 days, p=0.0333) than those without. In patients without asthma, severe outcomes were more frequent in those given corticosteroids (OR 2.63, 95% CI 1.02-6.96; p=0.0466) or presenting >4 days after disease onset (OR 5.49, 95% CI 2.28-14.03; p=0.0002). Influenza vaccination in at-risk groups (including asthma) were lower than intended by national policy and the early use of antiviral medications were less than optimal. Mucosal immune responses were equivalent between groups. Those with asthma had higher serum interferon (IFN)-α, but lower serum tumour necrosis factor, interleukin (IL)-5, IL-6, CXCL8, CXCL9, IL-10, IL-17 and CCL2 levels (all p<0.05); both groups had similar serum IL-13, total IgE, periostin and blood eosinophil gene expression levels. Asthma diagnosis was unrelated to viral load, IFN-α, IFN-γ, IL-5 or IL-13 levels. CONCLUSIONS: Asthma is common in those hospitalised with influenza, but may not represent classical type 2-driven disease. Those admitted with influenza tend to be female with mild serum inflammatory responses, increased serum IFN-α levels and good clinical outcomes.


Assuntos
Asma/imunologia , Citocinas/imunologia , Imunidade nas Mucosas/imunologia , Influenza Humana/imunologia , Mucosa Nasal/imunologia , Adolescente , Corticosteroides/uso terapêutico , Adulto , Antivirais/uso terapêutico , Asma/complicações , Asma/genética , Feminino , Hospitalização , Humanos , Inflamação , Vacinas contra Influenza , Influenza Humana/complicações , Influenza Humana/genética , Influenza Humana/terapia , Interferon-alfa/imunologia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Mortalidade , Oxigenoterapia , Respiração Artificial/estatística & dados numéricos , Transcriptoma , Reino Unido , Adulto Jovem
4.
Am J Respir Crit Care Med ; 198(8): 1074-1084, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688024

RESUMO

RATIONALE: Respiratory syncytial virus (RSV) bronchiolitis is a major cause of morbidity and mortality in infancy. Severe disease is believed to result from uncontrolled viral replication, an excessive immune response, or both. OBJECTIVES: To determine RSV load and immune mediator levels in nasal mucosal lining fluid by serial sampling of nasal fluids from cases of moderate and severe bronchiolitis over the course of infection. METHODS: Infants with viral bronchiolitis necessitating admission (n = 55) were recruited from a pediatric center during 2016 and 2017. Of these, 30 were RSV infected (18 "moderate" and 12 mechanically ventilated "severe"). Nasal fluids were sampled frequently over time using nasosorption devices and nasopharyngeal aspiration. Hierarchical clustering of time-weighted averages was performed to investigate cytokine and chemokine levels, and gene expression profiling was conducted. MEASUREMENTS AND MAIN RESULTS: Unexpectedly, cases with severe RSV bronchiolitis had lower nasal viral loads and reduced IFN-γ and C-C chemokine ligand 5/RANTES (regulated upon activation, normal T cell expressed and secreted) levels than those with moderate disease, especially when allowance was made for disease duration (all P < 0.05). Reduced cytokine/chemokine levels in severe disease were also seen in children with other viral infections. Gene expression analysis of nasopharyngeal aspiration samples (n = 43) confirmed reduced type-I IFN gene expression in severe bronchiolitis accompanied by enhanced expression of MUC5AC and IL17A. CONCLUSIONS: Infants with severe RSV bronchiolitis have lower nasal viral load, CXCL10 (C-X-C motif chemokine ligand 10)/IP-10, and type-I IFN levels than moderately ill children, but enhanced MUC5AC (mucin-5AC) and IL17A gene expression in nasal cells.


Assuntos
Bronquiolite Viral/virologia , Interferons/metabolismo , Mucosa Nasal/virologia , Insuficiência Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Bronquiolite Viral/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mucosa Nasal/imunologia , Insuficiência Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Transcriptoma , Carga Viral
5.
J Infect Dis ; 215(8): 1240-1244, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28368490

RESUMO

Background: Existing respiratory mucosal sampling methods are flawed, particularly in a pediatric bronchiolitis setting. Methods: Twenty-four infants with bronchiolitis were recruited: 12 were respiratory syncytial virus (RSV)-positive, 12 were RSV-negative. Infants were sampled by nasosorption and nasopharyngeal aspiration (NPA). Results: Nasosorption was well tolerated and identified all RSV+ samples. RSV load measured by nasosorption (but not NPA) correlated with length of hospital stay (P = .04) and requirement for mechanical ventilation (P = .03). Nasosorption (but not NPA) levels of interferon γ, interleukin 1ß, CCL5/RANTES, and interleukin 10 (IL-10) were elevated in RSV+ bronchiolitis (all P < .05), furthermore CCL5 and IL-10 correlated with RSV load (P < .05). Conclusions: Nasosorption allowed measurement of RSV load and the mucosal inflammatory response in infants.


Assuntos
Bronquiolite Viral/diagnóstico , Inflamação/virologia , Mucosa Nasal/imunologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Carga Viral/métodos , Estudos de Casos e Controles , Quimiocina CCL5/análise , Feminino , Humanos , Lactente , Interferon gama/análise , Interleucinas/análise , Londres , Masculino , Mucosa Nasal/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano
8.
Nat Commun ; 14(1): 6607, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857661

RESUMO

Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.


Assuntos
Influenza Humana , Interferon Tipo I , Humanos , Animais , Camundongos , Leptina , Influenza Humana/complicações , Obesidade/complicações , Imunidade
9.
Front Mol Biosci ; 8: 619403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422898

RESUMO

Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a public health burden, with missense point mutations in the underlying Mycobacterium tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era along with advances in computational and structural biology provide opportunities to understand the interrelationships between the genetic basis and the structural consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide (PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates computational approaches to investigate the genetic and structural basis for PZA resistance development. We analysed 424 missense point mutations linked to PZA resistance derived from ∼35K M. tuberculosis clinical isolates sourced globally, which comprised the four main M. tuberculosis lineages (Lineage 1-4). Mutations were annotated to reflect their association with PZA resistance. Genomic measures (minor allele frequency and odds ratio), structural features (surface area, residue depth and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of point mutations on pncA protein stability and ligand affinity were assessed. Missense point mutations within pncA were distributed throughout the gene, with the majority (>80%) of mutations with a destabilising effect on protomer stability and on ligand affinity. Active site residues involved in PZA binding were associated with multiple point mutations highlighting mutational diversity due to selection pressures at these functionally important sites. There were weak associations between genomic measures and biophysical effect of mutations. However, mutations associated with PZA resistance showed statistically significant differences between structural features (surface area and residue depth), but not hydrophobicity score for mutational sites. Most interestingly M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile for mutations associated with PZA resistance, compared to modern lineages.

10.
Comput Struct Biotechnol J ; 18: 3377-3394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294134

RESUMO

Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resistance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic studies using high-throughput sequencing data have provided powerful new ways to rapidly detect and respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein function and evolution. Subsequent insights can then inform experimental studies, and direct existing or new computational methods. Here we review a range of sequence and structure-based computational tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the biophysical effects of mutations can help reveal the molecular basis and consequences of resistance development. Furthermore, we summarise how the application of such a mechanistic understanding of drug resistance can be applied to limit the impact of AMR.

11.
Science ; 370(6513)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033192

RESUMO

The variable outcome of viral exposure is only partially explained by known factors. We administered respiratory syncytial virus (RSV) to 58 volunteers, of whom 57% became infected. Mucosal neutrophil activation before exposure was highly predictive of symptomatic RSV disease. This was associated with a rapid, presymptomatic decline in mucosal interleukin-17A (IL-17A) and other mediators. Conversely, those who resisted infection showed presymptomatic activation of IL-17- and tumor necrosis factor-related pathways. Vulnerability to infection was not associated with baseline microbiome but was reproduced in mice by preinfection chemokine-driven airway recruitment of neutrophils, which caused enhanced disease mediated by pulmonary CD8+ T cell infiltration. Thus, mucosal neutrophilic inflammation at the time of RSV exposure enhances susceptibility, revealing dynamic, time-dependent local immune responses before symptom onset and explaining the as-yet unpredictable outcomes of pathogen exposure.


Assuntos
Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios , Adolescente , Adulto , Animais , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL1/farmacologia , Humanos , Inflamação/imunologia , Inflamação/virologia , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mucosa Nasal/patologia , Neutrófilos/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/patologia , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
12.
J Inflamm (Lond) ; 16: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675131

RESUMO

Acute lung injury (ALI) affects over 10% of patients hospitalised in critical care, with acute respiratory distress syndrome (ARDS) being the most severe form of ALI and having a mortality rate in the region of 40%. There has been slow but incremental progress in identification of biomarkers that contribute to the pathophysiology of ARDS, have utility in diagnosis and monitoring, and that are potential therapeutic targets (Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, Thompson T, Ware LB, Matthay MA, Lancet Respir Med 2014, 2:611--620). However, a major issue is that ARDS is such a heterogeneous, multi-factorial, end-stage condition that the strategies for "lumping and splitting" are critical (Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX, Am J Respir Crit Care Med 2016, 194:147--155). Nevertheless, sequencing of the human genome, the availability of improved methods for analysis of transcription to mRNA (gene expression), and development of sensitive immunoassays has allowed the application of network biology to ARDS, with these biomarkers offering potential for personalised or precision medicine (Sweeney TE, Khatri P, Toward precision medicine Crit Care Med; 2017 45:934-939). Biomarker panels have potential applications in molecular phenotyping for identifying patients at risk of developing ARDS, diagnosis of ARDS, risk stratification and monitoring. Two subphenotypes of ARDS have been identified on the basis of blood biomarkers: hypo-inflammatory and hyper-inflammatory. The hyper-inflammatory subphenotype is associated with shock, metabolic acidosis and worst clinical outcomes. Biomarkers of particular interest have included interleukins (IL-6 and IL-8), interferon gamma (IFN-γ), surfactant proteins (SPD and SPB), von Willebrand factor antigen, angiopoietin 1/2 and plasminogen activator inhibitor-1 (PAI-1). In terms of gene expression (mRNA) in blood there have been found to be increases in neutrophil-related genes in sepsis-induced and influenza-induced ARDS, but whole blood expression does not give a robust diagnostic test for ARDS. Despite improvements in management of ARDS on the critical care unit, this complex disease continues to be a major life-threatening event. Clinical trials of ß2-agonists, statins, surfactants and keratinocyte growth factor (KGF) have been disappointing. In addition, monoclonal antibodies (anti-TNF) and TNFR fusion protein have also been unconvincing. However, there have been major advances in methods of mechanical ventilation, a neuromuscular blocker (cisatracurium besilate) has shown some benefit, and stem cell therapy is being developed. In the future, by understanding the role of biomarkers in the pathophysiology of ARDS and lung injury, it is hoped that this will provide rational therapeutic targets and ultimately improve clinical care (Seymour CW, Gomez H, Chang CH, Clermont G, Kellum JA, Kennedy J, Yende S, Angus DC, Crit Care 2017, 21:257).

13.
J Vis Exp ; (131)2018 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29443104

RESUMO

The methods of nasal absorption (NA) and bronchial absorption (BA) use synthetic absorptive matrices (SAM) to absorb the mucosal lining fluid (MLF) of the human respiratory tract. NA is a non-invasive technique which absorbs fluid from the inferior turbinate, and causes minimal discomfort. NA has yielded reproducible results with the ability to frequently repeat sampling of the upper airway. By comparison, alternative methods of sampling the respiratory mucosa, such as nasopharyngeal aspiration (NPA) and conventional swabbing, are more invasive and may result in greater data variability. Other methods have limitations, for instance, biopsies and bronchial procedures are invasive, sputum contains many dead and dying cells and requires liquefaction, exhaled breath condensate (EBC) contains water and saliva, and lavage samples are dilute and variable. BA can be performed through the working channel of a bronchoscope in clinic. Sampling is well tolerated and can be conducted at multiple sites in the airway. BA results in MLF samples being less dilute than bronchoalveolar lavage (BAL) samples. This article demonstrates the techniques of NA and BA, as well as the laboratory processing of the resulting samples, which can be tailored to the desired downstream biomarker being measured. These absorption techniques are useful alternatives to the conventional sampling techniques used in clinical respiratory research.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Meios de Cultura/química , Mucosa Nasal/química , Mucosa Respiratória/química , Manejo de Espécimes/métodos , Feminino , Humanos , Masculino
14.
EBioMedicine ; 19: 128-138, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28373098

RESUMO

BACKGROUND: Rhinovirus infection is a major cause of asthma exacerbations. OBJECTIVES: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. METHODS: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. RESULTS: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). CONCLUSIONS: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation.


Assuntos
Asma/imunologia , Brônquios/imunologia , Citocinas/imunologia , Mucosa Nasal/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus , Adulto , Asma/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/virologia , Carga Viral , Adulto Jovem
15.
PLoS One ; 10(9): e0135363, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367003

RESUMO

BACKGROUND: Practical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS) is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR)-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF). METHODS: We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 per protocol). Doses of ultrapure LPS (1, 10, 30 or 100µg/100µl) or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM), a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1) was quantified from nasal epithelial curettage samples taken before and after challenge. RESULTS: Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1ß, IL-6, CXCL8 (IL-8) and CCL3 (MIP-1α) (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100µg LPS). At 100µg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05). Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10µg and 30µg LPS). CONCLUSIONS: Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa. KEY MESSAGES: Ultrapure LPS was used as innate immune stimulus in a human nasal challenge model, with serial sampling of nasal mucosal lining fluid (MLF) by nasosorption using a synthetic absorptive matrix (SAM), and nasal curettage of mucosal cells. A dose response could be demonstrated in terms of levels of IL-1ß, IL-6, CXCL8 and CCL3 in MLF, as well as ICAM-1 mRNA in nasal curettage specimens, and levels of neutrophils in nasal lavage. Depending on higher baseline levels of inflammation, there were occasional magnified innate inflammatory responses to LPS. TRIAL REGISTRATION: Clinical Trials.gov NCT02284074.


Assuntos
Quimiocinas/metabolismo , Imunidade Inata , Interleucinas/metabolismo , Lipopolissacarídeos/imunologia , Mucosa Nasal/imunologia , Adolescente , Adulto , Quimiocinas/genética , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucinas/genética , Lipopolissacarídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Sprays Nasais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
BMJ Open ; 5(1): e005750, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25631307

RESUMO

INTRODUCTION: Cigarette smoke contributes to a diverse range of diseases including chronic obstructive pulmonary disease (COPD), cardiovascular disorders and many cancers. There currently is a need for human challenge models, to assess the acute effects of a controlled cigarette smoke stimulus, followed by serial sampling of blood and respiratory tissue for advanced molecular profiling. We employ precision sampling of nasal mucosal lining fluid by absorption to permit soluble mediators measurement in eluates. Serial nasal curettage was used for transcriptomic analysis of mucosal tissue. METHODS AND ANALYSIS: Three groups of strictly defined patients will be studied: 12 smokers with COPD (GOLD Stage 2) with emphysema, 12 matched smokers with normal lung function and no evidence of emphysema, and 12 matched never smokers with normal spirometry. Patients in the smoking groups are current smokers, and will be given full support to stop smoking immediately after this study. In giving a controlled cigarette smoke stimulus, all patients will have abstained from smoking for 12 h, and will smoke two cigarettes with expiration through the nose in a ventilated chamber. Before and after inhalation of cigarette smoke, a series of samples will be taken from the blood, nasal mucosal lining fluid and nasal tissue by curettage. Analysis of plasma nicotine and metabolites in relation to levels of soluble inflammatory mediators in nasal lining fluid and blood, as well as assessing nasal transcriptomics, ex vivo blood platelet aggregation and leucocyte responses to toll-like receptor agonists will be undertaken. IMPLICATIONS: Development of acute cigarette smoke challenge models has promise for the study of molecular effects of smoking in a range of pathological processes. ETHICS AND DISSEMINATION: This study was approved by the West London National Research Ethics Committee (12/LO/1101). The study findings will be presented at conferences and will be reported in peer-reviewed journals.


Assuntos
Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Projetos de Pesquisa , Fumar/imunologia , Fumar/metabolismo , Administração por Inalação , Humanos , Modelos Biológicos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA