Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0261322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108280

RESUMO

Despite rigorous sterilization protocols placed in surgical procedures, there is demonstrated evidence that show patients contract infections while hospitalized. This study aims to investigate the presence of biological materials in osteotome surgical tools after sterilization processes, determine the relationship between lack of sharpness and cross-contamination, and evaluate the influence of materials surface coating as a potential contamination preventive. Three commercially available osteotomes with different surface coatings were studied and submitted to a procedure of bone-cutting cycles. After use, each was sterilized and examined under SEM and EDS. Bone contaminants were detected in each osteotome although the PVD coated osteotome demonstrated significantly less contamination than either the as-supplied or electroless nickel coated one. According to the results, there is an association between blade sharpness and post-sterilization bone contamination. These findings suggest either disposable osteotomes should be used in surgical procedures, or an effective sharpen process should both be established and monitored to minimise post-operative infections.


Assuntos
Infecção Hospitalar/etiologia , Instrumentos Cirúrgicos/efeitos adversos , Materiais Revestidos Biocompatíveis/química , Infecção Hospitalar/diagnóstico , Desenho de Equipamento , Humanos , Microscopia Eletrônica de Varredura , Osteotomia/instrumentação , Projetos Piloto , Propriedades de Superfície
2.
Materials (Basel) ; 14(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203344

RESUMO

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°-relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α' martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.

3.
J Orthop Surg Res ; 15(1): 253, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650812

RESUMO

BACKGROUND: Osteotomes are bone cutting tools commonly reused in orthopedic surgical procedures. Despite undergoing rigorous cleaning, visual inspection, and sterilization procedures between every use, the condition of the cutting blade edge is commonly not qualitatively assessed. Subjective feedback from surgeons suggests a large variation in osteotome cutting-edge sharpness is found during use. This study seeks to investigate the retention of osteotome cutting-edge sharpness by comparing the wear resistance of as-supplied, electroless nickel, and titanium nitride coated osteotomes following a series of bone cutting tests. METHODS: Changes in edge sharpness were assessed using visual inspection, depth penetration testing that quantified change in the blade sharpness index, and scanning electron microscopy visual analysis. Visual inspection of each osteotome blade edge was then compared to qualitative blade sharpness index measurement. RESULTS: After use, no cutting-edge damage or change in blade sharpness was detected by visual examination of all three osteotomes; however, the as-supplied osteotome demonstrated 50% loss of blade sharpness index compared to 30% and 15% reduction for the electroless nickel and titanium nitride coated osteotomes, respectively. This finding was supported by scanning electron microscopy evaluation that found greater mechanical damage had occurred along the cutting edge of the as-supplied osteotome compared to the two coated with wear resistant materials. CONCLUSIONS: The rapid loss of blade sharpness found in the as-supplied osteotome supports the degradation in cutting performance frequently reported by surgeons. The findings from this study demonstrate blade sharpness index better detects cutting-edge wear compared to visual inspection. Results from this pilot study also suggest the coating of osteotomes in hard-wearing biocompatible materials assists in retaining cutting-edge sharpness over multiple uses. Further study using a larger sample size is required to validate these findings.


Assuntos
Materiais Revestidos Biocompatíveis , Desenho de Equipamento , Falha de Equipamento , Reutilização de Equipamento , Osteotomia/instrumentação , Instrumentos Cirúrgicos , Dureza , Manutenção , Níquel , Projetos Piloto , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA