RESUMO
Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.
Assuntos
Transdução de Sinais , Adenilil Ciclases/metabolismo , Adenilil Ciclases/química , Guanilato Ciclase/metabolismo , Guanilato Ciclase/química , Animais , Humanos , Domínio Catalítico , Arabidopsis/metabolismo , Domínios Proteicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/químicaRESUMO
Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3's action remains unknown. IRAK3 functions as a guanylate cyclase, and its cGMP product suppresses lipopolysaccharide (LPS)-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activity. To understand the implications of this phenomenon, we expanded the structure-function analyses of IRAK3 through site-directed mutagenesis of amino acids known or predicted to impact different activities of IRAK3. We verified the capacity of the mutated IRAK3 variants to generate cGMP in vitro and revealed residues in and in the vicinity of its GC catalytic center that impact the LPS-induced NFκB activity in immortalized cell lines in the absence or presence of an exogenous membrane-permeable cGMP analog. Mutant IRAK3 variants with reduced cGMP generating capacity and differential regulation of NFκB activity influence subcellular localization of IRAK3 in HEK293T cells and fail to rescue IRAK3 function in IRAK3 knock-out THP-1 monocytes stimulated with LPS unless the cGMP analog is present. Together, our results shed new light on the mechanism by which IRAK3 and its enzymatic product control the downstream signaling, affecting inflammatory responses in immortalized cell lines.
Assuntos
Guanilato Ciclase , Quinases Associadas a Receptores de Interleucina-1 , Humanos , Guanilato Ciclase/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Células HEK293 , Mutação , NF-kappa B/genéticaRESUMO
The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.
Assuntos
Receptores 5-HT3 de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Células HEK293 , Ondansetron/farmacologia , Mitocôndrias/metabolismoRESUMO
Interleukin-1 receptor-associated kinase-3 (IRAK3) is a critical checkpoint molecule of inflammatory responses in the innate immune system. The pseudokinase domain of IRAK3 contains a guanylate cyclase (GC) centre that generates small amounts of cyclic guanosine monophosphate (cGMP) associated with IRAK3 functions in inflammation. However, the mechanisms of IRAK3 actions are poorly understood. The effects of low cGMP levels on inflammation are unknown, therefore a dose-response effect of cGMP on inflammatory markers was assessed in THP-1 monocytes challenged with lipopolysaccharide (LPS). Sub-nanomolar concentrations of membrane permeable 8-Br-cGMP reduced LPS-induced NFκB activity, IL-6 and TNF-α cytokine levels. Pharmacologically upregulating cellular cGMP levels using a nitric oxide donor reduced cytokine secretion. Downregulating cellular cGMP using a soluble GC inhibitor increased cytokine levels. Knocking down IRAK3 in THP-1 cells revealed that unlike the wild type cells, 8-Br-cGMP did not suppress inflammatory responses. Complementation of IRAK3 knockdown cells with wild type IRAK3 suppressed cytokine production while complementation with an IRAK3 mutant at GC centre only partially restored this function. Together these findings indicate low levels of cGMP form a critical component in suppressing cytokine production and in mediating IRAK3 action, and this may be via a cGMP enriched nanodomain formed by IRAK3 itself.
Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Monócitos , GMP Cíclico , Citocinas , Guanilato Ciclase , Humanos , Inflamação , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos , Óxido NítricoRESUMO
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Assuntos
GMP Cíclico/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Plantas/química , Proteínas Quinases/química , ProteóliseRESUMO
5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These advances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subunits and increasing understanding of their implications in patient's predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.
Assuntos
Imunidade/imunologia , Inflamação/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Receptores 5-HT3 de Serotonina/química , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologiaRESUMO
Ubiquitination is a prevalent post-translational modification involved in all aspects of cell physiology. It is mediated by an enzymatic cascade and the E2 ubiquitin-conjugating enzymes (UBCs) lie at its heart. Even though E3 ubiquitin ligases determine the specificity of the reaction, E2s catalyze the attachment of ubiquitin and have emerged as key mediators of chain assembly. They are largely responsible for the type of linkage between ubiquitin moieties and thus, the fate endowed onto the modified substrate. However, in vivo E2-E3 pairing remains largely unexplored. We therefore interrogated the interaction selectivity between 37 Arabidopsis E2s and PUB22, a U-box type E3 ubiquitin ligase that is involved in the dampening of immune signaling. We show that whereas the U-box domain, which mediates E2 docking, is able to interact with 18 of 37 tested E2s, the substrate interacting armadillo (ARM) repeats impose a second layer of specificity, allowing the interaction with 11 E2s. In vitro activity assayed by autoubiquitination only partially recapitulated the in vivo selectivity. Moreover, in vivo pairing was modulated during the immune response; pairing with group VI UBC30 was inhibited, whereas interaction with the K63 chain-building UBC35 was increased. Functional analysis of ubc35 ubc36 mutants shows that they partially mimic pub22 pub23 pub24 enhanced activation of immune responses. Together, our work provides a framework to interrogate in vivo E2-E3 pairing and reveals a multi-tiered and dynamic E2-E3 network.
Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Inata , Proteínas Mutantes , Ligação Proteica , Enzimas de Conjugação de Ubiquitina/genéticaRESUMO
The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3',5'-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities.
Assuntos
GMP Cíclico/fisiologia , Guanilato Ciclase/fisiologia , Peptídeos Natriuréticos/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Guanilato Ciclase/metabolismo , Simulação de Acoplamento Molecular , Peptídeos Natriuréticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Ressonância de Plasmônio de Superfície , Equilíbrio Hidroeletrolítico/fisiologiaRESUMO
BACKGROUND: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. FINDINGS: Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. CONCLUSIONS: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated.
RESUMO
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Assuntos
Cordados , Receptores 5-HT3 de Serotonina , Animais , Humanos , Filogenia , Serotonina , Ecossistema , LigantesRESUMO
Recent discoveries have established functional guanylate cyclase (GC) catalytic centers with low activity within kinase domains in plants. These crypto GCs generate guanosine 3',5'-cyclic monophosphate (cGMP) essential for both intramolecular and downstream signaling. Here, we have set out to search for such crypto GCs moonlighting in kinases in the H. sapiens proteome and identified 18 candidates, including the neurotropic receptor tyrosine kinase 1 (NTRK1). NTRK1 shows a domain architecture much like plant receptor kinases such as the phytosulfokine receptor, where a functional GC essential for downstream signaling is embedded within a kinase domain. In vitro characterization of the NTRK1 shows that the embedded NTRK1 GC is functional with a marked preference for Mn2+ over Mg2+. This therefore points to hitherto unsuspected roles of cGMP in intramolecular and downstream signaling of NTRK1 and the role of cGMP in NTRK1-dependent growth and neoplasia.
RESUMO
In contrast to other eukaryotic model organisms, the closely related ubiquitin (Ub)-conjugating enzymes UBC35 and UBC36 are the main sources of K63-linked Ub chains in Arabidopsis.1 Although K63-linked chains have been associated with the regulation of vesicle trafficking, definitive proof for their role in endocytosis was missing. We show that the ubc35 ubc36 mutant has pleiotropic phenotypes related to hormone and immune signaling. Specifically, we reveal that ubc35-1 ubc36-1 plants have altered turnover of integral membrane proteins including FLS2, BRI1, and PIN1 at the plasma membrane. Our data indicates that K63-Ub chains are generally required for endocytic trafficking in plants. In addition, we show that in plants K63-Ub chains are involved in selective autophagy through NBR1, the second major pathway delivering cargoes to the vacuole for degradation. Similar to autophagy-defective mutants, ubc35-1 ubc36-1 plants display an accumulation of autophagy markers. Moreover, autophagy receptor NBR1 interacts with K63-Ub chains, which are required for its delivery to the lytic vacuole.2 Together, we show that K63-Ub chains act as a general signal required for the two main pathways delivering cargo to the vacuole and thus, to maintain proteostasis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Endocitose , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Autofagia , Proteínas de Transporte , Proteínas de Arabidopsis/metabolismoRESUMO
BACKGROUND: Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. METHODS: This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. RESULTS: The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. CONCLUSIONS: A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/metabolismo , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Roedores , Sepse/genética , Regulação para CimaRESUMO
Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses.
RESUMO
Interactors of the plant natriuretic peptide present in Arabidopsis thaliana, termed AtPNP-A, were affinity-based isolated from A. thaliana (Col-0) leaf mesophyll cell protoplasts by incubating the protoplasts with biologically active biotinylated peptide corresponding to amino acid sequence of the active site of AtPNP-A (pAtPNP-A), either in the presence or absence of a cross-linking agent, 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP), or with equimolar amount of biotin with DTSSP (negative control). Upon biotin/streptavidin-based isolation of proteins bound to the pAtPNP-A or biotin, the proteins were separated by sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE), digested with trypsin and subjected to identification with liquid chromatography tandem mass spectrometry (LC-MS/MS). Label-free quantification of identified proteins allowed identification of binding partners of AtPNP-A, paving the way for pinpointing novel signal transduction pathways AtPNP-A is involved in. The raw and processed LC-MS/MS data reported in this article have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD017925.
RESUMO
BACKGROUND: IRAK3 is a critical modulator of inflammation in innate immunity. IRAK3 is associated with many inflammatory diseases, including sepsis, and is required in endotoxin tolerance to maintain homeostasis of inflammation. The impact of IRAK3 on inflammatory markers such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell culture models remains controversial. OBJECTIVE: To analyse temporal effects of IRAK3 on inflammatory markers after one- or two-challenge interventions in cell culture models. METHODS: A systematic search was performed to identify in vitro cell studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data were available. Comparisons of outcome measures were performed between different cell lines and human and mouse primary cells. RESULTS: The literature search identified 7766 studies for screening. After screening titles, abstracts and full-texts, a total of 89 studies were included in the systematic review. CONCLUSIONS: The review identifies significant effects of IRAK3 on decreasing NF-κB DNA binding activity in cell lines, TNF-α protein level at intermediate time intervals (4h-15h) in cell lines or at long term intervals (16h-48h) in mouse primary cells following one-challenge. The patterns of TNF-α protein expression in human cell lines and human primary cells in response to one-challenge are more similar than in mouse primary cells. Meta-analyses confirm a negative correlation between IRAK3 and inflammatory cytokine (IL-6 and TNF-α) expression after two-challenges.
Assuntos
Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Animais , Linhagem Celular , Humanos , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Analogues of vertebrate natriuretic peptides (NPs) present in plants, termed plant natriuretic peptides (PNPs), comprise a novel class of hormones that systemically affect salt and water balance and responses to plant pathogens. Several lines of evidence indicate that Arabidopsis thaliana PNP (AtPNP-A) affects cellular redox homeostasis, which is also typical for the signaling of its vertebrate analogues, but the molecular mechanism(s) of this effect remains elusive. Here we report identification of catalase 2 (CAT2), an antioxidant enzyme, as an interactor of AtPNP-A. The full-length AtPNP-A recombinant protein and the biologically active fragment of AtPNP-A bind specifically to CAT2 in surface plasmon resonance (SPR) analyses, while a biologically inactive scrambled peptide does not. In vivo bimolecular fluorescence complementation (BiFC) showed that CAT2 interacts with AtPNP-A in chloroplasts. Furthermore, CAT2 activity is lower in homozygous atpnp-a knockdown compared with wild type plants, and atpnp-a knockdown plants phenocopy CAT2-deficient plants in their sensitivity to elevated H2O2, which is consistent with a direct modulatory effect of the PNP on the activity of CAT2 and hence H2O2 homeostasis. Our work underlines the critical role of AtPNP-A in modulating the activity of CAT2 and highlights a mechanism of fine-tuning plant responses to adverse conditions by PNPs.
Assuntos
Antioxidantes/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos Natriuréticos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Catalase/genética , Homeostase , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/metabolismo , Transdução de SinaisRESUMO
OBJECTIVES: To evaluate methods for the pre-treatment verification of volumetric modulated arc therapy (VMAT) based on the percentage gamma passing rate (%GP) and its correlation and sensitivity with percentage dosimetric errors (%DE). METHODS: A total of 25 patients with prostate cancer and 15 with endometrial cancer were analysed. The %GP values of 2D and 3D verifications with different acceptance criteria (1%/1 mm, 2%/2 mm, and 3%/3 mm) were obtained using OmniPro and Compass. The %DE was calculated using a planned dose volume histogram (DVH) created in Monaco's treatment planning system (TPS), which relates radiation dose to tissue and the patient's predicted dose volume histogram in Compass. Statistical correlation between %GP and %DE was verified using Pearson's correlation coefficient. Sensitivity was calculated based on the receiver operating characteristics (ROC) curve. Plans were calculated using Collapsed Cone Convolution and the Monte Carlo algorithm. RESULTS: The t-test results of the planned and estimated DVH showed that the mean values were comparable (P > 0.05). For the 3%/3 mm criterion, the average %GP was acceptable for the prostate and endometrial cancer groups, with average rates of 99.68 ± 0.49% and 99.03 ± 0.59% for 2D and 99.86 ± 0.39% and 99.53 ± 0.44% for 3D, respectively. The number of correlations was poor for all analysed data. The mean Pearson's R-values for prostate and endometrial cancer were < 0.45 and < 0.43, respectively. The area under the ROC curve for the prostate and endometrial cancer groups, was lower than 0.667. CONCLUSIONS: Analysis of the %GP versus %DE values revealed only weak correlations between 2D and 3D verifications. DVH results obtained using the Compass system will be helpful in confirming that the analysed plans respect dosimetric constraints.
Assuntos
Neoplasias do Endométrio/radioterapia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Correlação de Dados , Feminino , Humanos , Masculino , Dosagem RadioterapêuticaRESUMO
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
RESUMO
Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC-MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article "Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress" by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.