Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430526

RESUMO

Innovative technological solutions are required to improve patients' quality of life and deliver suitable treatment. Healthcare workers may be able to watch patients from a distance using the Internet of Things (IoT) by using big data algorithms to analyze instrument outputs. Therefore, it is essential to gather information on use and health problems in order to improve the remedies. To ensure seamless incorporation for use in healthcare institutions, senior communities, or private homes, these technological tools must first and foremost be easy to use and implement. We provide a network cluster-based system known as smart patient room usage in order to achieve this. As a result, nursing staff or caretakers can use it efficiently and swiftly. This work focuses on the exterior unit that makes up a network cluster, a cloud storage mechanism for data processing and storage, as well as a wireless or unique radio frequency send module for data transfer. In this article, a spatio-temporal cluster mapping system is presented and described. This system creates time series data using sense data collected from various clusters. The suggested method is the ideal tool to use in a variety of circumstances to improve medical and healthcare services. The suggested model's ability to anticipate moving behavior with high precision is its most important feature. The time series graphic displays a regular light movement that continued almost the entire night. The last 12 h' lowest and highest moving duration numbers were roughly 40% and 50%, respectively. When there is little movement, the model assumes a normal posture. Particularly, the moving duration ranges from 7% to 14%, with an average of 7.0%.


Assuntos
Algoritmos , Qualidade de Vida , Humanos , Monitorização Fisiológica , Leitos , Big Data
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA