Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300042

RESUMO

Regulation of extracellular acid-base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2 At 13°C, H. gammarus juveniles were able to fully compensate for acid-base disturbances caused by the exposure to elevated seawater PCO2  at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3-] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2 , indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid-base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.


Assuntos
Dióxido de Carbono , Nephropidae , Equilíbrio Ácido-Base , Animais , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
2.
J Exp Biol ; 218(Pt 14): 2148-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987731

RESUMO

Species distributions and ecology can often be explained by their physiological sensitivity to environmental conditions. Whilst we have a relatively good understanding of how these are shaped by temperature, for other emerging drivers, such as PCO2  we know relatively little. The marine polychaete Sabella spallanzanii increases its metabolic rate when exposed to high PCO2  conditions and remains absent from the CO2 vent of Ischia. To understand new possible pathways of sensitivity to CO2 in marine ectotherms, we examined the metabolic plasticity of S. spallanzanii exposed in situ to elevated PCO2  by measuring fundamental metabolite and carbonic anhydrase concentrations. We show that whilst this species can survive elevated PCO2  conditions in the short term, and exhibits an increase in energy metabolism, this is accompanied by a significant decrease in carbonic anhydrase concentration. These homeostatic changes are unlikely to be sustainable in the longer term, indicating S. spallanzanii may struggle with future high PCO2  conditions.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Poliquetos/metabolismo , Aclimatação , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético , Homeostase , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Água do Mar/química
3.
J Exp Biol ; 216(Pt 7): 1191-201, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239894

RESUMO

There is a growing body of evidence implicating the involvement of crustacean hyperglycaemic hormone (CHH) in ionic homeostasis in decapod crustaceans. However, little is known regarding hormonally influenced osmoregulatory processes in terrestrial decapods. As many terrestrial decapods experience opposing seasonal demands upon ionoregulatory physiologies, we reasoned that these would make interesting models in which to study the effect of CHH upon these phenomena. In particular, those (tropical) species that also undergo seasonal migrations might be especially informative, as we know relatively little regarding the nature of CHHs in terrestrial decapods, and hormonally mediated responses to seasonal changes in metabolic demands might also be superimposed or otherwise integrated with those associated with ionic homeostasis. Using Discoplax celeste as a model crab that experiences seasonal extremes in water availability, and exhibits diurnal and migratory activity patterns, we identified two CHHs in the sinus gland. We biochemically characterised (cDNA cloning) one CHH and functionally characterised (in terms of dose-dependent hyperglycaemic responses and glucose-dependent negative feedback loops) both CHHs. Whole-animal in situ branchial chamber (22)NaCl perfusion experiments showed that injection of both CHHs increased gill Na(+) uptake in a seasonally dependent manner, and (51)Cr-EDTA clearance experiments demonstrated that CHH increased urine production by the antennal gland. Seasonal and salinity-dependent differences in haemolymph CHH titre further implicated CHH in osmoregulatory processes. Intriguingly, CHH appeared to have no effect on gill Na(+)/K(+)-ATPase or V-ATPase activity, suggesting unknown mechanisms of this hormone's action on Na(+) transport across gill epithelia.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/fisiologia , Homeostase/fisiologia , Hormônios de Invertebrado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Análise de Variância , Animais , Austrália , Glicemia/metabolismo , Braquiúros/metabolismo , Cromatografia Líquida de Alta Pressão , Radioisótopos de Cromo/metabolismo , Retroalimentação Fisiológica/fisiologia , Fluorimunoensaio , Hemolinfa/metabolismo , Ácido Láctico/metabolismo , Estações do Ano , Radioisótopos de Sódio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Microbiologyopen ; 10(2): e1179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970543

RESUMO

Little is known about the functions of the crustacean gut microbiome, but environmental parameters and habitat are known to affect the composition of the intestinal microbiome, which may in turn affect the physiological status of the host. The mud crab Scylla serrata is an economically important species, and is wild-caught, and farmed across the Indo-Pacific region. In this study, we compared the composition of the gut microbiome (in terms of gut microbial species richness and abundance) of S. serrata collected from wild sites, and farms, from the east and west coast of India, and also tested the effects of the environment on the composition. The water temperature had a statistically significant effect on gut microbiome composition, with microbial biodiversity decreasing with increasing water temperature. This could have negative effects on both wild and farmed mud crabs under future climate change conditions, although further research into the effects of temperature on gut microbiomes is required. By comparison, salinity, crab mass and carapace width, geographical location as well as whether they were farmed or wild-caught crabs did not have a significant impact on gut microbiome composition. The results indicate that farming does not significantly alter the composition of the gut microbiome when compared to wild-caught crabs.


Assuntos
Bactérias/classificação , Braquiúros/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/genética , Biodiversidade , DNA Bacteriano , Índia , RNA Ribossômico 16S , Salinidade , Análise de Sequência de DNA/métodos , Temperatura
5.
J Exp Biol ; 213(Pt 17): 3062-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20709934

RESUMO

The Christmas Island red crab Gecarcoidea natalis undergoes extreme changes in metabolic status, ranging from inactivity during the dry season, to a spectacular annual breeding migration at the start of the wet season. The dramatic change in metabolic physiology that this polarisation entails should be reflected in changes in endocrine physiology, particularly that of the crustacean hyperglycaemic hormone (CHH), of which we know relatively little. CHH levels were measured using a novel ultrasensitive time-resolved fluoroimmunoassay (TR-FIA), together with metabolites (glucose, lactate), in the field at several scales of temporal resolution, during migratory activities (wet season) and during the inactive fossorial phase (dry season). Release patterns of CHH were measured during extreme (forced) exercise, showing for the first time an unexpectedly rapid pulsatile release of this hormone. A seasonally dependent glucose-sensitive negative-feedback loop was identified that might be important in energy mobilisation during migration. Haemolymph lactate levels were strongly correlated with CHH levels in both field and experimental animals. During migration, CHH levels were lower than during the dry season and, during migration, daytime CHH levels (when most locomotor activity occurred) increased. However, the intense dawn activity in both dry and wet seasons was not always associated with repeatable hyperglycaemia or CHH release. The results obtained are discussed in relation to the life history and behaviour of G. natalis.


Assuntos
Adaptação Fisiológica , Migração Animal/fisiologia , Braquiúros/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estações do Ano , Animais , Proteínas de Artrópodes , Glicemia/metabolismo , Retroalimentação Fisiológica , Fluorimunoensaio , Glicogênio/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado , Ácido Láctico/sangue , Masculino , Micronésia , Músculos/metabolismo , Proteínas do Tecido Nervoso/sangue , Condicionamento Físico Animal , Padrões de Referência
6.
Sci Total Environ ; 693: 133444, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31362229

RESUMO

Coastal ecosystems, including estuaries, are increasingly pressured by expanding hypoxic regions as a result of human activities such as increased release of nutrients and global warming. Hypoxia is often defined as oxygen concentrations below 2 mL O2 L-1. However, taxa vary markedly in their sensitivity to hypoxia and can be affected by a broad spectrum of low oxygen levels. To better understand how reduced oxygen availability impacts physiological and molecular processes in invertebrates, we investigated responses of an estuarine amphipod to an ecologically-relevant level of moderate hypoxia (~2.6 mL O2 L-1) or severe hypoxia (~1.3 mL O2 L-1). Moderate hypoxia elicited a reduction in aerobic scope, and widespread changes to gene expression, including upregulation of metabolic genes and stress proteins. Under severe hypoxia, a marked hyperventilatory response associated with maintenance of aerobic performance was accompanied by a muted transcriptional response. This included a return of metabolic genes to baseline levels of expression and downregulation of transcripts involved in protein synthesis, most of which indicate recourse to hypometabolism and/or physiological impairment. We conclude that adverse ecological effects may occur under moderate hypoxia through compromised individual performance and, therefore, even modest declines in future oxygen levels may pose a significant challenge to coastal ecosystems.


Assuntos
Anfípodes/fisiologia , Estuários , Oxigênio/análise , Anfípodes/efeitos dos fármacos , Animais , Aquecimento Global
7.
Front Physiol ; 10: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019470

RESUMO

Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings - especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.

8.
Conserv Physiol ; 5(1): cox013, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413683

RESUMO

Glucose is an important metabolic fuel and circulating levels are tightly regulated in most mammals, but can drop when body fuel reserves become critically low. Glucose is mobilized rapidly from liver and muscle during stress in response to increased circulating cortisol. Blood glucose levels can thus be of value in conservation as an indicator of nutritional status and may be a useful, rapid assessment marker for acute or chronic stress. However, seals show unusual glucose regulation: circulating levels are high and insulin sensitivity is limited. Accurate blood glucose measurement is therefore vital to enable meaningful health and physiological assessments in captive, wild or rehabilitated seals and to explore its utility as a marker of conservation relevance in these animals. Point-of-care devices are simple, portable, relatively cheap and use less blood compared with traditional sampling approaches, making them useful in conservation-related monitoring. We investigated the accuracy of a hand-held glucometer for 'instant' field measurement of blood glucose, compared with blood drawing followed by laboratory testing, in wild grey seals (Halichoerus grypus), a species used as an indicator for Good Environmental Status in European waters. The glucometer showed high precision, but low accuracy, relative to laboratory measurements, and was least accurate at extreme values. It did not provide a reliable alternative to plasma analysis. Poor correlation between methods may be due to suboptimal field conditions, greater and more variable haematocrit, faster erythrocyte settling rate and/or lipaemia in seals. Glucometers must therefore be rigorously tested before use in new species and demographic groups. Sampling, processing and glucose determination methods have major implications for conclusions regarding glucose regulation, and health assessment in seals generally, which is important in species of conservation concern and in development of circulating glucose as a marker of stress or nutritional state for use in management and monitoring.

9.
Toxicon ; 140: 147-156, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109054

RESUMO

The south west coast of India has been showing a steady increase in shellfish cultivation both for local consumption and fishery export, over recent years. Perna viridis and Crassostrea madrasensis are two species of bivalve molluscs which grow in some selected regions of southern Karnataka, close to the city of Mangalore. In the early 1980s, shellfish consumers in the region were affected by intoxication from Paralytic Shellfish Poison present in local bivalves (clams and oysters) resulting in hospitalisation of many, including one fatality. Since then, there have been no further reports of serious shellfish intoxication and there is little awareness of the risks from natural toxins and no routine monitoring programme in place to protect shellfish consumers. This study presents the findings from the first ever systematic assessment of the presence of marine toxins in mussels and oysters grown in four different shellfish harvesting areas in the region. Shellfish were collected and subjected to analysis for ASP, PSP and lipophilic toxins, as well as a suite of non-EU regulated toxins such as tetrodotoxin and selected cyclic imines. Results revealed the presence of low levels of PSP toxins in oysters throughout the study period. Overall, total toxicities reached a maximum of 10% of the EU regulatory limit of 800 µg STX eq/kg. Toxin profiles were similar to those reported from the 1980 outbreak. No evidence was found for significant levels of ASP and lipophilic toxins, although some cyclic imines were detected, including gymnodimine. The results indicated that the risk to shellfish consumers during this specific study period would have been low. However, with historical evidence for extremely high levels of PSP toxins in molluscs, there is a strong need for routine surveillance of shellfish production areas for marine toxins, in order to mitigate against human health impacts resulting from unexpected harmful algal blooms, with potentially devastating socio-economic consequences.


Assuntos
Bivalves/química , Toxinas Marinhas/análise , Frutos do Mar/análise , Animais , Proliferação Nociva de Algas , Índia , Intoxicação por Frutos do Mar
10.
Nat Commun ; 8: 13994, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067268

RESUMO

Physiological responses to temperature are known to be a major determinant of species distributions and can dictate the sensitivity of populations to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification (OA), will shape species distributions in the future. Here, by integrating population genetics with experimental data for growth and mineralization, physiology and metabolomics, we demonstrate that the sensitivity of populations of the gastropod Littorina littorea to future OA is shaped by regional adaptation. Individuals from populations towards the edges of the natural latitudinal range in the Northeast Atlantic exhibit greater shell dissolution and the inability to upregulate their metabolism when exposed to low pH, thus appearing most sensitive to low seawater pH. Our results suggest that future levels of OA could mediate temperature-driven shifts in species distributions, thereby influencing future biogeography and the functioning of marine ecosystems.

11.
Mar Biol ; 163(10): 211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729710

RESUMO

We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions.

12.
Sci Rep ; 6: 32413, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576351

RESUMO

There is growing evidence that climate change will increase the prevalence of toxic algae and harmful bacteria, which can accumulate in marine bivalves. However, we know little about any possible interactions between exposure to these microorganisms and the effects of climate change on bivalve health, or about how this may affect the bivalve toxin-pathogen load. In mesocosm experiments, mussels, Perna viridis, were subjected to simulated climate change (warming and/or hyposalinity) and exposed to harmful bacteria and/or toxin-producing dinoflagellates. We found significant interactions between climate change and these microbes on metabolic and/or immunobiological function and toxin-pathogen load in mussels. Surprisingly, however, these effects were virtually eliminated when mussels were exposed to both harmful microorganisms simultaneously. This study is the first to examine the effects of climate change on determining mussel toxin-pathogen load in an ecologically relevant, multi-trophic context. The results may have considerable implications for seafood safety.


Assuntos
Bivalves/microbiologia , Mudança Climática , Ecossistema , Toxinas Marinhas , Animais , Organismos Aquáticos/patogenicidade , Bactérias/patogenicidade , Bivalves/crescimento & desenvolvimento
13.
PLoS One ; 8(6): e65600, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750269

RESUMO

Assessing genetic variation underlying ecologically important traits is increasingly of interest and importance in population and conservation genetics. For some groups generally useful markers exist for examining the relative role of selection and drift in shaping genetic diversity e.g. the major histocompatibility complex in vertebrates and self-incompatibility loci in plants. For invertebrates there is no such generally useful locus. However, phosphoglucose isomerase (Pgi) has been proposed as a useful functional marker in the conservation genetics of invertebrates. Where thermal microclimate varies, balanced polymorphisms may be maintained due to trade-offs between thermally stable and kinetically advantageous allelic forms. We here report very low levels of Pgi variation in bumblebees rendering this locus to be of little use as an adaptive marker in a conservation genetics context in this group. Potential explanations for this lack of variation are considered.


Assuntos
Abelhas/enzimologia , Abelhas/genética , Conservação dos Recursos Naturais , Variação Genética , Glucose-6-Fosfato Isomerase/genética , Substituição de Aminoácidos , Animais , Loci Gênicos/genética , Haplótipos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA