Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 28(25): 37149-37166, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379554

RESUMO

Light scattering characteristics of the cyanobacterium Microcystis are investigated with numerical models for sphere aggregates. During summer bloom seasons, Microcystis is prevalent in many inland waters across the globe. Monitoring concentrations with remote sensing techniques requires knowledge of the inherent optical properties (IOPs), especially the backscattering properties of Microcystis cells and colonies in natural settings. In situ measurements in waters dominated by Microcystis blooms have previously detected extremely high backscattering ratios, i.e., bb/b>0.043 at 443 nm [1], the highest to our knowledge in the natural environment. These highbb/bvalues could hold promise as a diagnostic tool in identifying and monitoring Microcystis using optical approaches. However, it has been unclear how this type of optically 'soft' organic particle can generate such highbb/bvalues. In this study, the Multiple Sphere T-matrix (MSTM) model is used to calculate the IOPs of model colonies, including bb/b. Colony sizes in the model ranged from several cells to several hundred and both colony packing density and cell gas vacuole content were varied. Results are compared with model results for equivalent-volume spheres (EVS) and direct in situ measurements. Colony formation was required in the modeling to reproduce the high bb/bconsistent with in situ measurements. The combination of moderate to very dense colony (packing density >30%) and high gas vacuole content in individual cells (volume percentage >20%) was the most favorable condition leading to rapid increases in bb/bwith increasing number of cells Ncell of the colony. Significant linear correlations were observed betweenbb/b and Ncell1/3 for these colonies, wherebb/b increased beyond 0.04 once cell number reached about 1000 cells in the case with the most densely packed cells and highest gas vacuole content. Within commonly observed colony sizes (Ncell <106), colonies with high gas vacuole content exhibited bb/bvalues up to 0.055, consistent with direct measurements from Lake Erie. Polarized scattering was also of interest as a diagnostic tool, particularly with future Earth-orbiting polarimeters being deployed for the NASA Plankton, Aerosols, Cloud, ocean Ecosystem (PACE) mission. The Degree of Linear Polarization (DoLP), expressed by the ratio of two Mueller matrix elements-P12/P11, decreased with increasing colony cell number for Microcystis. Another ratio of two Mueller matrix elementsP22/P11, an index for nonsphericity, also decreased with increasing colony size. In addition to higher relative backscattering, greater colony packing density and larger gas vacuole sizes both led to lower DoLP peak magnitude and lowerP22/P11. An optical opposition feature due to constructive phase interference that was observed previously for cosmic dusts is also present for these modeled colonies, manifested by a narrow intensity peak and negative polarization dip near exact backscattering direction, gradually forming as colony size increases.


Assuntos
Eutrofização , Luz , Microcystis/fisiologia , Espalhamento de Radiação , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Análise Espacial
2.
Opt Express ; 26(19): 24384-24402, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469558

RESUMO

The nature and magnitude of measurement uncertainties (precision and accuracy) associated with two approaches for measuring absorption by turbid waters (b(532 nm) ranging from 0.20 m-1 to 22.89 m-1) are investigated here: (a) point source integrating cavity absorption meters (PSICAM), and (b) reflective tube absorption meters (AC-9 and AC-s - both WET Labs Inc., USA). Absolute measurement precision at 440 nm was quantified using standard deviations of triplicate measurements for the PSICAM and de-trended, bin averaged time series for the AC-9/s, giving comparable levels (< 0.006 m-1) for both instruments. Using data collected from a wide range of UK coastal waters, PSICAM accuracy was assessed by comparing both total non-water absorption and absorption by coloured dissolved organic material (CDOM) measured on discrete samples by two independent PSICAMs. AC-9/s performance was tested by comparing total non-water absorption measured in situ by an AC-9 and an AC-s mounted on the same frame. Results showed that the PSICAM outperforms AC-9/s instruments with regards to accuracy, with average spread in the PSICAM total absorption data of 0.006 m-1 (RMSE) compared to 0.028 m-1 for the AC-9/s devices. Despite application of a state of the art scattering correction method, the AC-9/s instruments still tend to overestimate absorption compared to PSICAM data by on average 0.014 m-1 RMSE (AC-s) and 0.043 m-1 RMSE (AC-9). This remaining discrepancy can be largely attributed to residual limitations in the correction of AC-9/s data for scattering effects and limitations in the quality of AC-9/s calibration measurements.

3.
Limnol Oceanogr ; 63(1): 122-143, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456268

RESUMO

In situ measurements were undertaken to characterize particle fields in undisturbed oceanic environments. Simultaneous, co-located depth profiles of particle fields and flow characteristics were recorded using a submersible holographic imaging system and an acoustic Doppler velocimeter, under different flow conditions and varying particle concentration loads, typical of those found in coastal oceans and lakes. Nearly one million particles with major axis lengths ranging from ∼14 µm to 11.6 mm, representing diverse shapes, sizes, and aspect ratios were characterized as part of this study. The particle field consisted of marine snow, detrital matter, and phytoplankton, including colonial diatoms, which sometimes formed "thin layers" of high particle abundance. Clear evidence of preferential alignment of particles was seen at all sampling stations, where the orientation probability density function (PDF) peaked at near horizontal angles and coincided with regions of low velocity shear and weak turbulent dissipation rates. Furthermore, PDF values increased with increasing particle aspect ratios, in excellent agreement with models of spheroidal particle motion in simple shear flows. To the best of our knowledge, although preferential particle orientation in the ocean has been reported in two prior cases, our findings represent the first comprehensive field study examining this phenomenon. Evidence of nonrandom particle alignment in aquatic systems has significant consequences to aquatic optics theory and remote sensing, where perfectly random particle orientation and thus isotropic symmetry in optical parameters is assumed. Ecologically, chain-forming phytoplankton may have evolved to form large aspect ratio chains as a strategy to optimize light harvesting.

4.
Prog Oceanogr ; 160: 186-212, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30573929

RESUMO

Ocean color measured from satellites provides daily global, synoptic views of spectral waterleaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

5.
Appl Opt ; 57(7): 1705-1716, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522024

RESUMO

A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (nr) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and nr isolines where each particle is assigned the diameter and nr values of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known nr, and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC nr values were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population.

6.
Remote Sens Environ ; 206: 375-390, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414567

RESUMO

Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONET-OC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An open-ocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the full-Stokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.

7.
Opt Express ; 25(15): 18122-18130, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789301

RESUMO

Asymptotic theory is based on the principle that the shape of the light field with depth gradually transforms from being dependent on the incident surface light field to being constant azimuthally and dependent only on the absorption and scattering properties of the water column. Properties such as the average cosine of the oceanic light field in the asymptotic regime, µ¯∞, are thus strictly inherent optical properties (IOPs). Because of the close link between asymptotic light fields and IOPs, radiative transfer approximations (RTAs) for the asymptotic regime have been adapted for use in algorithms describing surface remote sensing reflectance RRS ( = Lu/Ed) in terms of the IOPs. For such algorithms to have utility, the asymptotic average cosine needs to be parameterized in terms of IOPs useful for ocean color remote sensing. With this motivation, µ¯∞is approximated as a function of the ratio of total backscattering to total absorption, bb/a. An additional variable in assessments is the fractional water content of pure seawater in total backscattering, ηbb. A full range of representative phase functions for natural particle fields is included in the analysis using the Fournier-Forand analytical approximation. Analytical expressions for multi-order polynomial fits are provided for µ¯∞ as a function of bb/a for each ηbb assessed, for ηbb ≤ 0.49, and for the entire data set. The full range of phase function shapes were included in each fit. Percent absolute errors were a modest 3.4% for the fit for the entire data set. Additionally, a key assumption by Zaneveld that the attenuation coefficient for upwelling nadir radiance KLu in surface waters should be approximately equivalent to the attenuation coefficient in the asymptotic regime K∞ was evaluated. Results provide justification and relationships for the targeted application of asymptotic parameters in ocean color RTAs for the surface ocean.

8.
Opt Express ; 25(12): 13577-13587, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788901

RESUMO

Passive ocean observing sensors are unable to detect subsurface structure in ocean properties, resulting in errors in water column integrated phytoplankton biomass and net primary production (NPP) estimates. Active lidar (light detection and ranging) sensors make quantitative measurements of depth-resolved backscatter (bbp) and diffuse light attenuation (Kd) coefficients in the ocean and can provide critical measurements for biogeochemical models. Sub-surface phytoplankton biomass, light, chlorophyll, and NPP fields were characterized using both in situ measurements and coincident airborne high spectral resolution lidar (HSRL-1) measurements collected as part of the SABOR (Ship-Aircraft Bio-Optical Research) field campaign. We found that depth-resolved data are critical for calculating phytoplankton stocks and NPP, with improvements in NPP estimates up to 54%. We observed strong correlations between coincident HSRL-1 and in situ IOP measurements of both bbp (r = 0.94) and Kd (r = 0.90).

9.
Opt Express ; 25(24): A1139-A1153, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29220991

RESUMO

In situ absorption measurements collected with a WET Labs ac-9 employing a reflective tube approach were scatter corrected using several possible methods and compared to reference measurements made by a PSICAM to assess performance. Overall, two correction methods performed best for the stations sampled: one using an empirical relationship between the ac-9 and PSICAM to derive the scattering error (ε) in the near-infrared (NIR), and one where ε was independently derived from concurrent measurements of the volume scattering function (VSF). Application of the VSF-based method may be more universally applicable, although difficult to routinely apply because of the lack of commercially available VSF instrumentation. The performance of the empirical approach is encouraging as it relies only on the ac meter measurement and may be readily applied to historical data, although there are inevitably some inherent assumptions about particle composition that hinder universal applicability. For even the best performing methods, residual errors of 20% or more were commonly observed for many water types. For clear ocean waters, a conventional baseline subtraction with the assumption of negligible near-IR absorption performed as well or better than the above methods because propagated uncertainties were lower than observed with the proportional method.

10.
Opt Express ; 24(22): A1374-A1389, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828523

RESUMO

The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.


Assuntos
Clorofila/análise , Fitoplâncton , Clorofila A , Monitoramento Ambiental , Luz , Fenômenos Físicos
11.
Appl Opt ; 55(3): 626-37, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26835939

RESUMO

Polarized light fields contain more information than simple irradiance and such capabilities provide an advanced tool for underwater imaging. The concept of the beam spread function (BSF) for analysis of scalar underwater imaging was extended to a polarized BSF which considers polarization. The following studies of the polarized BSF in an underwater environment through Monte Carlo simulations and experiments led to a simplified underwater polarimetric imaging model. With the knowledge acquired in the analysis of the polarimetric imaging formation process of a manmade underwater target with known polarization properties, a method to extract the inherent optical properties of the water and to retrieve polarization characteristics of the target was explored. The proposed method for retrieval of underwater target polarization characteristics should contribute to future efforts to reveal the underlying mechanism of polarization camouflage possessed by marine animals and finally to generalize guidelines for creating engineered surfaces capable of similar polarization camouflage abilities in an underwater environment.


Assuntos
Meio Ambiente , Imageamento Tridimensional , Água , Simulação por Computador , Luz , Modelos Teóricos , Método de Monte Carlo , Nefelometria e Turbidimetria , Análise Numérica Assistida por Computador , Fotografação/instrumentação
12.
Opt Express ; 22(15): 18698-706, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089487

RESUMO

Bio-optical models are used to develop a model of the lidar extinction-to-backscatter ratio applicable to oceanographic lidar. The model is based on chlorophyll concentration, and is expected to be valid for Case 1 waters. The limiting cases of narrow- and wide-beam lidars are presented and compared with estimates based on in situ optical measurements. Lidar measurements are also compared with the model using in situ or satellite estimates of chlorophyll concentration. A modified lidar ratio is defined, in which the properties of pure sea water are removed. This modified ratio is shown to be nearly constant for wide-beam lidar operating in low-chlorophyll waters, so accurate inversion to derive extinction and backscattering is possible under these conditions. This ratio can also be used for lidar calibration.

13.
PeerJ ; 12: e17516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881863

RESUMO

Bioluminescence is light chemically produced by an organism. It is widespread across all major marine phyla and has evolved multiple times, resulting in a high diversity of spectral properties and first flash kinetic parameters (FFKP). The bioluminescence of a system is often a good proxy for planktonic biomass. The species-specific parameters of bioluminescent displays can be measured to identify species in situ and describe planktonic biodiversity. Most bioluminescent organisms will flash when mechanically stimulated i.e., when subjected to supra-threshold levels of shear stress. Here we compare first flash kinetic parameters such as flash duration, peak intensity, rise time, decay time, first-flash mechanically stimulated light and e-folding time obtained with the commercially available Underwater Bioluminescence Assessment Tool (UBAT). We provide descriptions of the first flash kinetic parameters of several species of dinoflagellates Pyrocystis fusiformis, Pyrocystis noctiluca, Pyrodinium bahamense, Lingulodinium polyedra, Alexandrium monilatum and two zooplankton (the ctenophore Mnemiopsis leidyi and the larvacean Oikopleura sp.). FFKPs are then compared and discussed using non-parametric analyses of variance (ANOVAs), hierarchical clustering and a linear discriminant analysis to assess the ability to use bioluminescence signatures for identification. Once the first flash kinetic parameters of a bioluminescent species have been described, it is possible to detect its presence using emissions collected by in situ bathyphotometers. Assessing abundance and diversity of bioluminescent species may therefore be possible.


Assuntos
Biodiversidade , Dinoflagellida , Medições Luminescentes , Zooplâncton , Zooplâncton/fisiologia , Animais , Dinoflagellida/classificação , Dinoflagellida/fisiologia , Medições Luminescentes/métodos , Especificidade da Espécie
14.
Appl Opt ; 52(36): 8685-705, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513934

RESUMO

Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulations, revealing the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions to the vector radiative transfer equation, which depends on the incident light field and three types of parameters: inherent optical properties, the scattering matrix, and the benthic reflectance. These were measured directly or calculated from measurements with additional assumptions. Specifically, the Lambertian model used to simulate benthic reflectances is something of a simplification of reality, but the bottoms used in this study are found to be crucial for accurate simulations of polarization. Comparisons of simulations with and without bottom contributions show that only the former corroborate measurements of the Stokes components and the degree of linear polarization (DoLP) collected by the polarimeter developed at the City College of New York. Because this polarimeter is multiangular and hyperspectral, errors can be computed point-wise over a large range of scattering angles and wavelengths. Trends also become apparent. DoLP is highly sensitive to the benthic reflectance and to the incident wavelength, peaking in the red band, but the angle of linear polarization is almost spectrally constant and independent of the bottom. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota; to hide underwater successfully, animals must reflect light just as depolarized as that reflected by benthic materials.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Luz , Refratometria/métodos , Espalhamento de Radiação , Água do Mar/química
15.
Opt Express ; 20(7): 7630-45, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453442

RESUMO

Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.


Assuntos
Modelos Químicos , Refratometria/métodos , Água/química , Simulação por Computador , Luz , Espalhamento de Radiação
16.
Appl Opt ; 50(9): 1240-59, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21460996

RESUMO

For a particle population with known size, composition, structure, and shape distributions, its volume scattering function (VSF) can be estimated from first principles through a governing relationship, the Fredholm linear integral equation of the first kind. Inverting the Fredholm equation to derive the composition and size distribution of particles from measured VSFs remains challenging because 1) the solution depends on the kernel function, and 2) the kernel function needs to be constructed to avoid singularity. In this study, a thorough review of the earlier and current inversion techniques is provided. An inversion method based on nonnegative least squares is presented and evaluated using the VSFs measured by a prototype volume scattering meter at the LEO-15 site off the New Jersey coast. The kernel function was built by a compilation of individual subpopulations, each of which follows a lognormal size distribution and whose characteristic size and refractive index altogether cover the entire ranges of natural variability of potential marine particles of the region. Sensitivity analyses were conducted to ensure the kernel function being constructed is neither singular nor pathological. A total of 126 potential subpopulations were identified, among which 11 are common in more than half of the inversions and only five consistently present (>90% of measurements). These five subpopulations can be interpreted as small colloidal type particles of sizes around 0.02 µm, submicrometer detritus-type particles (n(r)=1.02, r(mode)=0.2 µm), two micrometer-sized subpopulations with one relatively soft (n(r)=1.04 and r(mode)=1.6 µm) and the other relatively refringent (n(r)=1.10 and r(mode)=3.2 µm), and bubbles of relatively large sizes (n(r)=0.75 and r(mode)=10 µm). Reconstructed PSDs feature a bimodal shape, with the smaller peak dominated by the colloidal subpopulations and the larger particles closely approximated by a power-law function. The Junge-type slope averages -4.0±0.2, in close agreement with the well-known mean value of -4.0 over the global ocean. The distribution of the refractive index suggested a dominance of particles of higher water content, also in agreement with earlier results based on the backscattering ratio and attenuation coefficients at the same area. Surprisingly, the colloidal-type subpopulations, which have often been operationally classified as "dissolved" and neglected for their scattering, exhibit significant backscattering with contributions of up to 40% over the entire backward angles.

17.
Appl Opt ; 50(24): 4873-93, 2011 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-21857713

RESUMO

Polarization states of the underwater light field were measured by a hyperspectral and multiangular polarimeter and a video polarimeter under various atmospheric, surface, and water conditions, as well as solar and viewing geometries, in clear oceanic waters near Port Aransas, Texas. Some of the first comprehensive comparisons were made between the measured polarized light, including the degree and angle of linear polarization and linear Stokes parameters (Q and U), and those from Monte Carlo simulations that used concurrently measured water inherent optical properties and particle volume scattering functions as input. For selected wavelengths in the visible spectrum, measured and model-simulated polarization characteristics were found to be consistent in most cases. Measured degree and angle of linear polarization are found to be largely determined by an in-water single-scattering model. Model simulations suggest that the degree of linear polarization (DoLP) at horizontal viewing directions is highly dependent on the viewing azimuth angle for a low solar elevation. This implies that animals can use the DoLP signal for orientation.


Assuntos
Luz , Modelos Teóricos , Espalhamento de Radiação , Algoritmos , Animais , Simulação por Computador , Monitoramento Ambiental , Modelos Lineares , Método de Monte Carlo , Oceanos e Mares , Água do Mar , Água/análise
18.
Harmful Algae ; 103: 102012, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980451

RESUMO

Harmful algal blooms that can produce toxins are common in the Indian River Lagoon (IRL), which covers ~250 km of Florida's east coast. The current study assessed the dynamics of microcystins and saxitoxin in six segments of the IRL: Banana River Lagoon (BRL), Mosquito Lagoon (ML), Northern IRL (NIRL), Central IRL (CIRL), Southern IRL (SIRL), and the St. Lucie Estuary (SLE). Surface water samples (n = 40) collected during the 2018 wet and 2019 dry season were analyzed to determine associations between toxins and temperature, salinity, pH, oxygen saturation, concentrations of dissolved nutrients and chlorophyll-a, presence of biosynthetic genes for toxins, relative abundance of planktonic species, and composition of the microbial community. The potential toxicity of samples was assessed using multiple mammalian cell lines. Enzyme-Linked Immunosorbent Assays were used to determine concentrations of microcystins and saxitoxin. Overall, the microcystins concentration ranged between 0.01-85.70 µg/L, and saxitoxin concentrations ranged between 0.01-2.43 µg/L across the IRL. Microcystins concentrations were 65% below the limit of quantification (0.05 µg/L), and saxitoxin concentrations were 85% below the limit of detection (0.02 µg/L). Microcystins concentrations were higher in the SLE, while saxitoxin was elevated in the NIRL and BRL. Cytotoxicity related to the presence of microcystins was seen in the SLE during the wet season. No significant patterns between cytotoxicity and saxitoxin were identified. Dissolved nutrients were identified as the most highly related parameters, explaining 53% of microcystin and 47% of saxitoxin variability. Multivariate models suggested cyanobacteria, flagellates, ciliates, and diatoms as the subset of microorganisms whose abundances were maximally correlated with saxitoxin and microcystins concentrations. Lastly, biosynthetic genes for microcystins were detected in the SLE and for saxitoxin in the BRL and NIRL. These results highlight the synergistic roles environmental and biological parameters play in influencing the dynamics of toxin production by harmful algae in the IRL.


Assuntos
Microcistinas , Rios , Animais , Florida , Saxitoxina
19.
Appl Opt ; 49(15): 2784-96, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20490239

RESUMO

We present hydrographic and optical data collected concurrently from two different platforms, the R/P FLoating Instrument Platform and the R/V Kilo Moana, located about 2km apart in the Santa Barbara Channel in California. We show that optical variability between the two platforms was due primarily to platform effects, specifically the breakdown of stratification from mixing by the hull of R/P FLIP. Modeled underwater radiance distribution differed by as much as 50% between the two platforms during stratified conditions. We determine that the observed optical variability resulted in up to 57% differences in predicted horizontal visibility of a black target.

20.
Opt Express ; 17(22): 19580-5, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997177

RESUMO

Increased scattering by seawater relative to that by pure water is primarily due to additional fluctuation of the refractive index contributed by sea salts. Salts with different ionic weight and sizes, while barely affecting the scattering that is due to density fluctuations, have a significant effect on the scattering that is due to concentration fluctuations. And this explains the major differences of their total scattering that would be observed. Scattering by solutions of NaCl, the major sea salt, is consistently about 6.7% and 4% lower than seawater of the same mass concentration and of the same refractive index, respectively. Because of ionic interactions, the molecular scattering does not follow the simple addition rule that applies to bulk inherent optical properties, with the total less than the summation of the parts. The possible values of scattering by waters of, such as, Dead Sea or Orca Basin, which have different salt composition from seawater, are discussed.


Assuntos
Modelos Químicos , Nefelometria e Turbidimetria/métodos , Sais/química , Água do Mar/química , Simulação por Computador , Luz , Teste de Materiais , Refratometria , Espalhamento de Radiação , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA