Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091471

RESUMO

We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide-Kv1.3). Both the apo-Kv1.3 and dalazatide-Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide-Kv1.3, binding of dalazatide to the channel's outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3's transition into the drug-blocked state.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.3/efeitos dos fármacos , Potenciais da Membrana , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Molecular , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/ultraestrutura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/ultraestrutura , Alinhamento de Sequência/métodos
2.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175807

RESUMO

Aquaporins are tetrameric integral membrane proteins that act as water channels, and can also permeabilize membranes to other solutes. The monomer appears to be the functional form despite all aquaporins being organized as tetramers, which therefore must provide a clear functional advantage. In addition to this quaternary organization, some aquaporins can act as adhesion molecules in membrane junctions, when tetramers located in opposing membranes interact via their extracellular domains. These stacked forms have been observed in a range of aquaporins, whether using lipidic membrane environments, in electron crystallography, or using detergent micelles, in single-particle cryo-electron microscopy (cryo-EM). In the latter technique, structural studies can be performed when the aquaporin is reconstituted into nanodiscs of lipids that are surrounded by a protein scaffold. During attempts to study E. coli Aquaporin Z (AqpZ), we have found that in some conditions these nanodiscs tend to form filaments that appear to be either thicker head-to-tail or thinner side-to-side stacks of nanodiscs. Nanodisc oligomerization was observed using orthogonal analytical techniques analytical ultra-centrifugation and mass photometry, although the nature of the oligomers (head-to-tail or side-to-side) could not be determined. Using the latter technique, the AqpZ tetramer itself formed oligomers of increasing size when solubilized only in detergent, which is consistent with multiple stacking of AqpZ tetramers. We observed images consistent with both of these filaments in negative staining EM conditions, but only thicker filaments in cryo-EM conditions. We hypothesize that the apparent nanodisc side-to-side arrangement that can only be visualized in negative staining conditions is related to artifacts due to the sample preparation. Filaments of any kind were not observed in EM when nanodiscs did not contain AqpZ, or after addition of detergent into the nanodisc cryo-EM preparation, at concentrations that did not disrupt nanodisc formation. To our knowledge, these filaments have not been observed in nanodiscs preparations of other membrane proteins. AqpZ, like other aquaporins has a charge asymmetry between the cytoplasmic (more positive) and the extracellular sides, which may explain the likely head-to-tail stacking observed, both in nanodisc preparations and also in detergent micelles.


Assuntos
Aquaporinas , Proteínas de Escherichia coli , Nanoestruturas , Escherichia coli/metabolismo , Detergentes/química , Microscopia Crioeletrônica , Micelas , Proteínas de Escherichia coli/metabolismo , Aquaporinas/metabolismo , Proteínas de Membrana/metabolismo , Nanoestruturas/química
3.
J Struct Biol ; 204(3): 420-434, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342092

RESUMO

The Mycobacterium tuberculosis (Mtb) F1FO-ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) is an essential enzyme that supplies energy for both the aerobic growing and the hypoxic dormant stage of the mycobacterial life cycle. Employing the heterologous F-ATP synthase model system αchi3:ß3:γ we showed previously, that transfer of the C-terminal domain (CTD) of Mtb subunit α (Mtα514-549) to a standard F-ATP synthase α subunit suppresses ATPase activity. Here we determined the 3D reconstruction from electron micrographs of the αchi3:ß3:γ complex reconstituted with the Mtb subunit ε (Mtε), which has been shown to crosstalk with the CTD of Mtα. Together with the first solution shape of Mtb subunit α (Mtα), derived from solution X-ray scattering, the structural data visualize the extended C-terminal stretch of the mycobacterial subunit α. In addition, Mtε mutants MtεR62L, MtεE87A, Mtε6-121, and Mtε1-120, reconstituted with αchi3:ß3:γ provided insight into their role in coupling and in trapping inhibiting MgADP. NMR solution studies of MtεE87A gave insights into how this residue contributes to stability and crosstalk between the N-terminal domain (NTD) and the CTD of Mtε. Analyses of the N-terminal mutant Mtε6-121 highlight the differences of the NTD of mycobacterial subunit ε to the well described Geobacillus stearothermophilus or Escherichia coli counterparts. These data are discussed in context of a crosstalk between the very N-terminal amino acids of Mtε and the loop region of one c subunit of the c-ring turbine for coupling of proton-translocation and ATP synthesis activity.


Assuntos
Proteínas de Bactérias/química , ATPases Mitocondriais Próton-Translocadoras/química , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
4.
Compr Psychiatry ; 56: 17-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25280799

RESUMO

Pseudologia fantastica, also known as mythomania, or pathological lying, is a psychiatric phenomenon that is a mixture of fact and fiction involving fantasized events and self aggrandizing personal roles. It has been recognized in the field for over a century. In this case report we discuss three different cases, two of them presented in the acute inpatient setting and one outpatient setting. All three presented with the common theme of extensive and 'pathological lying' in a manner that was notably very destructive to them and posing significant challenges to the treatment team. In an attempt to shed light into some of the clinical and legal/forensic challenges it creates when faced in the clinical settings, we also raise the need for a better definition and classification of this symptom in the DSM.


Assuntos
Enganação , Fantasia , Psiquiatria Legal , Transtornos Mentais/psicologia , Transtornos Mentais/terapia , Transtorno Bipolar/complicações , Transtorno Bipolar/psicologia , Transtorno da Personalidade Borderline/complicações , Transtorno da Personalidade Borderline/psicologia , Crime/legislação & jurisprudência , Crime/psicologia , Delusões , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Pessoa de Meia-Idade , Psicologia do Esquizofrênico , Adulto Jovem
5.
PLoS Genet ; 5(5): e1000470, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424417

RESUMO

The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.


Assuntos
Proteínas de Drosophila/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chironomidae/genética , Chironomidae/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos , Células HeLa , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Imunoeletrônica , Modelos Biológicos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas/genética , Transativadores/genética , Transativadores/metabolismo
6.
Front Pharmacol ; 13: 924289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833027

RESUMO

Voltage-gated potassium (Kv) channels modulate the function of electrically-excitable and non-excitable cells by using several types of "gates" to regulate ion flow through the channels. An important gating mechanism, C-type inactivation, limits ion flow by transitioning Kv channels into a non-conducting inactivated state. Here, we highlight two recent papers, one on the human Kv1.3 channel and the second on the Drosophila Shaker Kv channel, that combined cryogenic electron microscopy and molecular dynamics simulation to define mechanisms underlying C-type inactivation. In both channels, the transition to the non-conducting inactivated conformation begins with the rupture of an intra-subunit hydrogen bond that fastens the selectivity filter to the pore helix. The freed filter swings outwards and gets tethered to an external residue. As a result, the extracellular end of the selectivity filter dilates and K+ permeation through the pore is impaired. Recovery from inactivation may entail a reversal of this process. Such a reversal, at least partially, is induced by the peptide dalazatide. Binding of dalazatide to external residues in Kv1.3 frees the filter to swing inwards. The extracellular end of the selectivity filter narrows allowing K+ to move in single file through the pore typical of conventional knock-on conduction. Inter-subunit hydrogen bonds that stabilize the outer pore in the dalazatide-bound structure are equivalent to those in open-conducting conformations of Kv channels. However, the intra-subunit bond that fastens the filter to the pore-helix is absent, suggesting an incomplete reversal of the process. These mechanisms define how Kv channels self-regulate the flow of K+ by changing the conformation of the selectivity filter.

7.
BMC Mol Biol ; 12: 46, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047075

RESUMO

BACKGROUND: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. RESULTS: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. CONCLUSIONS: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Transativadores/genética , Transativadores/metabolismo
8.
J Struct Biol X ; 4: 100028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647830

RESUMO

Zika virus (ZIKV) recently emerged as a major public health concern because it can cause fetal microcephaly and neurological disease such as the Guillain-Barré syndrome. A particularly potent class of broadly neutralizing antibodies (nAbs) targets a quaternary epitope located at the interface of two envelope proteins monomers, exposed at the surface of the mature virion. This "E-dimer-dependent epitope" (EDE), comprises the fusion loop of one monomer at the tip of domain II of E and a portion of the domains I and III of the adjacent monomer. Since this epitope largely overlaps with the binding site of the precursor membrane protein (prM) during Zika virion maturation, its molecular surface is evolutionary conserved in flaviviruses such as Dengue and Zika viruses, and can elicit antibodies that broadly neutralize various ZIKV strains. Here, we present a cryo-EM reconstruction at 4.1 Å resolution of the virion bound to the antigen binding fragment (Fab) of an antibody that targets this mutationally-constrained quaternary epitope. The Fab incompletely covers the surface of the virion as it does not bind next to its 5-fold icosahedral axes. The structure reveals details of the binding mode of this potent neutralizing class of antibodies and can inform the design of immunogens and vaccines targeting this conserved epitope.

9.
Sci Rep ; 8(1): 13587, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206241

RESUMO

Ribosomes are the dynamic protein synthesis machineries of the cell. They may exist in different functional states in the cell. Therefore, it is essential to have structural information on these different functional states of ribosomes to understand their mechanism of action. Here, we present single particle cryo-EM reconstructions of the Mycobacterium smegmatis 70S ribosomes in the hibernating state (with HPF), trans-translating state (with tmRNA), and the P/P state (with P-tRNA) resolved to 4.1, 12.5, and 3.4 Å, respectively. A comparison of the P/P state with the hibernating state provides possible functional insights about the Mycobacteria-specific helix H54a rRNA segment. Interestingly, densities for all the four OB domains of bS1 protein is visible in the hibernating 70S ribosome displaying the molecular details of bS1-70S interactions. Our structural data shows a Mycobacteria-specific H54a-bS1 interaction which seems to prevent subunit dissociation and degradation during hibernation without the formation of 100S dimer. This indicates a new role of bS1 protein in 70S protection during hibernation in Mycobacteria in addition to its conserved function during translation initiation.


Assuntos
Mycobacterium smegmatis/ultraestrutura , RNA Bacteriano/química , RNA Ribossômico/química , RNA de Transferência/química , Proteínas Ribossômicas/química , Ribossomos/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
10.
Cell Host Microbe ; 23(5): 618-627.e6, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29746833

RESUMO

Following the recent emergence of Zika virus (ZIKV), many murine and human neutralizing anti-ZIKV antibodies have been reported. Given the risk of virus escape mutants, engineering antibodies that target mutationally constrained epitopes with therapeutically relevant potencies can be valuable for combating future outbreaks. Here, we applied computational methods to engineer an antibody, ZAb_FLEP, that targets a highly networked and therefore mutationally constrained surface formed by the envelope protein dimer. ZAb_FLEP neutralized a breadth of ZIKV strains and protected mice in distinct in vivo models, including resolving vertical transmission and fetal mortality in infected pregnant mice. Serial passaging of ZIKV in the presence of ZAb_FLEP failed to generate viral escape mutants, suggesting that its epitope is indeed mutationally constrained. A single-particle cryo-EM reconstruction of the Fab-ZIKV complex validated the structural model and revealed insights into ZAb_FLEP's neutralization mechanism. ZAb_FLEP has potential as a therapeutic in future outbreaks.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Engenharia de Proteínas , Infecção por Zika virus/imunologia , Zika virus/genética , Zika virus/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/uso terapêutico , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Epitopos/química , Epitopos/genética , Feminino , Masculino , Camundongos , Modelos Moleculares , Testes de Neutralização/métodos , Gravidez , Estrutura Quaternária de Proteína , Resultado do Tratamento , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Viremia/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
11.
Mol Biol Cell ; 20(15): 3459-70, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19494042

RESUMO

Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins.


Assuntos
Exossomos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Precursores de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Chironomidae/citologia , Chironomidae/genética , Chironomidae/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Exossomos/ultraestrutura , Ribonucleoproteínas Nucleares Heterogêneas/genética , Imunoprecipitação , Microscopia Confocal , Microscopia Imunoeletrônica , Ligação Proteica , Precursores de Proteínas/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA