Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Osteoporos Rep ; 16(2): 130-137, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476394

RESUMO

PURPOSE OF REVIEW: Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. RECENT FINDINGS: Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.


Assuntos
Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Apoptose , Autofagia , Remodelação Óssea , Ácidos Graxos não Esterificados/metabolismo , Humanos , Osteoblastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Palmitatos/metabolismo , Estearatos/metabolismo
2.
Int J Mol Sci ; 17(1)2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703588

RESUMO

Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed's protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure.


Assuntos
Antioxidantes/farmacologia , Butileno Glicóis/farmacologia , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Linho/química , Raios gama , Glucosídeos/farmacologia , Pulmão/citologia , Extratos Vegetais/farmacologia , Animais , Morte Celular , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
3.
BMC Cancer ; 13: 179, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557217

RESUMO

BACKGROUND: Wholegrain flaxseed (FS), and its lignan component (FLC) consisting mainly of secoisolariciresinol diglucoside (SDG), have potent lung radioprotective properties while not abrogating the efficacy of radiotherapy. However, while the whole grain was recently shown to also have potent mitigating properties in a thoracic radiation pneumonopathy model, the bioactive component in the grain responsible for the mitigation of lung damage was never identified. Lungs may be exposed to radiation therapeutically for thoracic malignancies or incidentally following detonation of a radiological dispersion device. This could potentially lead to pulmonary inflammation, oxidative tissue injury, and fibrosis. This study aimed to evaluate the radiation mitigating effects of FLC in a mouse model of radiation pneumonopathy. METHODS: We evaluated FLC-supplemented diets containing SDG lignan levels comparable to those in 10% and 20% whole grain diets. 10% or 20% FLC diets as compared to an isocaloric control diet (0% FLC) were given to mice (C57/BL6) (n=15-30 mice/group) at 24, 48, or 72-hours after single-dose (13.5 Gy) thoracic x-ray treatment (XRT). Mice were evaluated 4 months post-XRT for blood oxygenation, lung inflammation, fibrosis, cytokine and oxidative damage levels, and survival. RESULTS: FLC significantly mitigated radiation-related animal death. Specifically, mice fed 0% FLC demonstrated 36.7% survival 4 months post-XRT compared to 60-73.3% survival in mice fed 10%-20% FLC initiated 24-72 hours post-XRT. FLC also mitigated radiation-induced lung fibrosis whereby 10% FLC initiated 24-hours post-XRT significantly decreased fibrosis as compared to mice fed control diet while the corresponding TGF-beta1 levels detected immunohistochemically were also decreased. Additionally, 10-20% FLC initiated at any time point post radiation exposure, mitigated radiation-induced lung injury evidenced by decreased bronchoalveolar lavage (BAL) protein and inflammatory cytokine/chemokine release at 16 weeks post-XRT. Importantly, neutrophilic and overall inflammatory cell infiltrate in airways and levels of nitrotyrosine and malondialdehyde (protein and lipid oxidation, respectively) were also mitigated by the lignan diet. CONCLUSIONS: Dietary FLC given early post-XRT mitigated radiation effects by decreasing inflammation, lung injury and eventual fibrosis while improving survival. FLC may be a useful agent, mitigating adverse effects of radiation in individuals exposed to incidental radiation, inhaled radioisotopes or even after the initiation of radiation therapy to treat malignancy.


Assuntos
Butileno Glicóis/administração & dosagem , Citocinas/metabolismo , Linho , Glucosídeos/administração & dosagem , Lesão Pulmonar/prevenção & controle , Fitoterapia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/administração & dosagem , Sementes , Ração Animal , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Fibrose/etiologia , Fibrose/prevenção & controle , Estimativa de Kaplan-Meier , Lignanas/administração & dosagem , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Lesão Pulmonar/complicações , Lesão Pulmonar/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Oxigênio/sangue , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/metabolismo , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/patologia , Taxa de Sobrevida , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
Bioorg Med Chem Lett ; 23(19): 5325-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978651

RESUMO

Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50=292.17±27.71 µM and 331.94±21.21 µM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50=275.24±13.15 µM). These values are significantly lower than those of ascorbic acid (EC50=1129.32±88.79 µM) and α-tocopherol (EC50=944.62±148.00 µM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68±0.27; synthetic (S,S)-SDG-1: 2.09±0.16; synthetic (R,R)-SDG-2: 1.96±0.27], peroxyl [natural (S,S)-SDG-1: 2.55±0.11; synthetic (S,S)-SDG-1: 2.20±0.10; synthetic (R,R)-SDG-2: 3.03±0.04] and DPPH [natural (S,S)-SDG-1: EC50=83.94±2.80 µM; synthetic (S,S)-SDG-1: EC50=157.54±21.30 µM; synthetic (R,R)-SDG-2: EC50=123.63±8.67 µM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.


Assuntos
Antioxidantes/síntese química , Butileno Glicóis/síntese química , Sequestradores de Radicais Livres/química , Glucosídeos/síntese química , Antioxidantes/química , Benzaldeídos/química , Butileno Glicóis/química , Linho/química , Glucosídeos/química , Estrutura Molecular
5.
Mol Pharmacol ; 82(6): 1230-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22989521

RESUMO

We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(-/-) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this situation. Our data offer a rationale for combining NVP-BEZ235 along with an autophagy inhibitor (i.e., chloroquine) and radiation in future clinical trials.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Imidazóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Radiossensibilizantes/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Autofagia/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
BMC Complement Altern Med ; 12: 47, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22520446

RESUMO

BACKGROUND: Flaxseed (FS), a nutritional supplement consisting mainly of omega-3 fatty acids and lignan phenolics has potent anti-inflammatory, anti-fibrotic and antioxidant properties. The usefulness of flaxseed as an alternative and complimentary treatment option has been known since ancient times. We have shown that dietary FS supplementation ameliorates oxidative stress and inflammation in experimental models of acute and chronic lung injury in mice resulting from diverse toxicants. The development of lung tissue damage in response to direct or indirect oxidant stress is a complex process, associated with changes in expression levels of a number of genes. We therefore postulated that flaxseed might modulate gene expression of vital signaling pathways, thus interfering with the development of tissue injury. METHODS: We evaluated gene expression in lungs of flaxseed-fed (10%FS) mice under unchallenged, control conditions. We reasoned that array technology would provide a powerful tool for studying the mechanisms behind this response and aid the evaluation of dietary flaxseed intervention with a focus on toxicologically relevant molecular gene targets. Gene expression levels in lung tissues were analyzed using a large-scale array whereby 28,800 genes were evaluated. RESULTS: 3,713 genes (12.8%) were significantly (p < 0.05) differentially expressed, of which 2,088 had a >1.5-fold change. Genes affected by FS include those in protective pathways such as Phase I and Phase II. CONCLUSIONS: The array studies have provided information on how FS modulates gene expression in lung and how they might be related to protective mechanisms. In addition, our study has confirmed that flaxseed is a nutritional supplement with potentially useful therapeutic applications in complementary and alternative (CAM) medicine especially in relation to treatment of lung disease.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Linho/química , Pneumopatias , Pulmão/efeitos dos fármacos , Preparações de Plantas/farmacologia , Transcriptoma , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Perfilação da Expressão Gênica/métodos , Lignanas/farmacologia , Lignanas/uso terapêutico , Pulmão/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/genética , Pneumopatias/metabolismo , Camundongos , Fenóis/farmacologia , Fenóis/uso terapêutico , Fitoterapia , Preparações de Plantas/uso terapêutico , Sementes/química , Transdução de Sinais/genética
7.
BMC Cancer ; 11: 269, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21702963

RESUMO

BACKGROUND: Flaxseed (FS) is a dietary supplement known for its antioxidant and anti-inflammatory properties. Radiation exposure of lung tissues occurs either when given therapeutically to treat intrathoracic malignancies or incidentally, such as in the case of exposure from inhaled radioisotopes released after the detonation of a radiological dispersion devise (RDD). Such exposure is associated with pulmonary inflammation, oxidative tissue damage and irreversible lung fibrosis. We previously reported that dietary FS prevents pneumonopathy in a rodent model of thoracic X-ray radiation therapy (XRT). However, flaxseed's therapeutic usefulness in mitigating radiation effects post-exposure has never been evaluated. METHODS: We evaluated the effects of a 10%FS or isocaloric control diet given to mice (C57/BL6) in 2 separate experiments (n = 15-25 mice/group) on 0, 2, 4, 6 weeks post a single dose 13.5 Gy thoracic XRT and compared it to an established radiation-protective diet given preventively, starting at 3 weeks prior to XRT. Lungs were evaluated four months post-XRT for blood oxygenation levels, inflammation and fibrosis. RESULTS: Irradiated mice fed a 0%FS diet had a 4-month survival rate of 40% as compared to 70-88% survival in irradiated FS-fed mouse groups. Additionally, all irradiated FS-fed mice had decreased fibrosis compared to those fed 0%FS. Lung OH-Proline content ranged from 96.5 ± 7.1 to 110.2 ± 7.7 µg/ml (Mean ± SEM) in all irradiated FS-fed mouse groups, as compared to 138 ± 10.8 µg/ml for mice on 0%FS. Concomitantly, bronchoalveolar lavage (BAL) protein and weight loss associated with radiation cachexia was significantly decreased in all FS-fed groups. Inflammatory cell influx to lungs also decreased significantly except when FS diet was delayed by 4 and 6 weeks post XRT. All FS-fed mice (irradiated or not), maintained a higher blood oxygenation level as compared to mice on 0%FS. Similarly, multiplex cytokine analysis in the BAL fluid revealed a significant decrease of specific inflammatory cytokines in FS-fed mice. CONCLUSIONS: Dietary FS given post-XRT mitigates radiation effects by decreasing pulmonary fibrosis, inflammation, cytokine secretion and lung damage while enhancing mouse survival. Dietary supplementation of FS may be a useful adjuvant treatment mitigating adverse effects of radiation in individuals exposed to inhaled radioisotopes or incidental radiation.


Assuntos
Linho , Pulmão/efeitos da radiação , Fitoterapia , Preparações de Plantas/uso terapêutico , Pneumonite por Radiação/dietoterapia , Protetores contra Radiação/uso terapêutico , Radioterapia/efeitos adversos , Sementes , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Líquido da Lavagem Broncoalveolar/química , Caquexia/dietoterapia , Caquexia/etiologia , Caquexia/prevenção & controle , Citocinas/análise , Dieta , Avaliação Pré-Clínica de Medicamentos , Feminino , Lignanas/sangue , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Oxigênio/sangue , Preparações de Plantas/administração & dosagem , Fibrose Pulmonar/dietoterapia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/prevenção & controle , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/prevenção & controle , Protetores contra Radiação/administração & dosagem , Distribuição Aleatória , Redução de Peso
8.
J Radiat Res ; 48(4): 305-15, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17548939

RESUMO

Tinospora cordifolia (RTc) has already been reported to protect whole-body lethally irradiated mice. This study has focussed on certain aspects of immuno-competence, which are adversely affected by irradiation. This study included estimation of spleen size, cell count, DNA fragmentation and apoptosis in splenocytes. The adherence, spreading and phagocytic activities of macrophages were also assessed. Cytokines in serum and anti-oxidants in plasma were also estimated. Administration of RTc (200 mg/kg.b.wt.) one hour before irradiation showed recovery of spleen weight from 49% of control in irradiated group to 93%; apoptosis from 19% to 2.8%; DNA fragmentation from 43% to 20.4%; macrophage adherence form 75% of control to 120% and macrophage spread size from 8 microm to 15 microm. RTc also stimulated proliferation in splenocytes in a dose-dependent manner. RTc administration before irradiation also increased levels of IL-1beta and GM-CSF levels, from 56 pg/ml and 53 pg/ml respectively in irradiated group to 59 pg/ml and 63 pg/ml. Similarly, radiation-induced decrease of anti-oxidant potential of plasma (32 Fe(2+) equiv.) as compared to control (132 Fe(2+) equiv.) was countered by administration of RTc before irradiation (74.2 Fe(2+) equiv.) RTc treatment thus reveals several radio-protective mechanisms.


Assuntos
Raios gama , Macrófagos/efeitos da radiação , Fitoterapia/métodos , Baço/efeitos da radiação , Tinospora/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Cromatografia em Camada Fina , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Baço/citologia , Baço/metabolismo
9.
Radiat Res ; 178(6): 568-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23106213

RESUMO

While dietary wholegrain Flaxseed (FS) has potent anti-inflammatory, anti-fibrotic and antioxidant properties in murine models of acute and chronic lung injury, the main bioactive ingredient that contributes to these protective effects remains unknown. This study evaluated the lignan complex of FS (FLC) enriched in secoisolariciresinol diglucoside with respect to lung radioprotective and tumor radiosensitizing efficacy using a mouse model of thoracic radiation-induced pneumonopathy. C57/Bl6 mice were fed 0% FS, 10% FS, 10% FLC or 20% FLC for 3 weeks, then irradiated with a single fraction (13.5 Gy) of X-ray radiation treatment (XRT). Mouse survival was monitored for 4 months after irradiation and inflammatory lung parameters were evaluated in bronchoalveolar lavage (BAL) fluid. Gene and protein levels of protective antioxidant and phase II enzymes were evaluated in lung tissue using qPCR and protein levels were verified by immunoblotting. Prolonged administration of the FLC diet was well tolerated and was not associated with any toxicity. Importantly, comparable to the whole grain 10% FS diet, irradiated mice fed 10% and 20% FLC diets displayed improved survival. Improved hemodynamic measurements were also recorded in irradiated mice fed 10% FS or 10% FLC diet compared to irradiated 0% FS fed mice. Flaxseed lignan complex diet also attenuated polymorphonuclear infiltration and overall lung inflammation to levels comparable to those in nonirradiated mice. Flaxseed lignan complex, similarly to FS, up-regulated gene expression as well as protein levels of protective antioxidant enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Dietary FLC induced radiosensitizing effects in our murine model of metastatic lung cancer. Importantly, protection of normal tissue does not thwart tumor cell death by radiation treatment. The dietary lignan complex of FS, mainly consisting of the phenolic secoisolariciresinol, is protective against radiation pneumonopathy in vivo while not hindering the tumoricidal effects of radiotherapy.


Assuntos
Butileno Glicóis/química , Linho/química , Glucosídeos/química , Lignanas/química , Lignanas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Fenóis/química , Animais , Antioxidantes/metabolismo , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/farmacologia , Ingestão de Alimentos , Feminino , Inflamação/etiologia , Inflamação/prevenção & controle , Lignanas/efeitos adversos , Pulmão/enzimologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonite por Radiação/prevenção & controle , Protetores contra Radiação/efeitos adversos , Protetores contra Radiação/síntese química , Protetores contra Radiação/farmacologia , Análise de Sobrevida , Tórax/efeitos dos fármacos , Tórax/efeitos da radiação , Redução de Peso/efeitos dos fármacos , Redução de Peso/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA