Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(11): 2800-2805, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345738

RESUMO

The relationship between the binding of the reaction intermediates and oxygen reduction activity in alkaline media was experimentally explored. By introducing Cu into the 2nd surface layer of a Pt(111) single crystal, the surface reactivity was tuned. In both 0.1 m NaOH and 0.1 m KOH, the optimal catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits a maximum activity of 101±8 mA cm-2 at 0.9 V vs. a reversible hydrogen electrode (RHE). This activity constitutes a circa 60-fold increase over Pt(111) in 0.1 m HClO4 .

2.
Phys Chem Chem Phys ; 17(13): 8349-55, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25412811

RESUMO

Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid-liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts. While there has been certain progress in the understanding of these electrolyte effects, lack of experimental data for various important systems frequently complicates the rational design of new active materials. Modern proton-exchange membrane (PEM) electrolyzers utilize Pt- and Ir-based electrocatalysts, which are among the very few materials that are both active and stable under the extreme conditions of water splitting. We use model Pt(111) and Ir-oxide films grown on Ir(111) electrodes and explore the effect of alkali metal cations and sulfate-anions on the hydrogen evolution and the oxygen evolution reactions in acidic media. We demonstrate that sulfate anions decrease the activity of Ir-oxide towards the oxygen evolution reaction while Rb(+) drastically promotes hydrogen evolution reaction at the Pt(111) electrodes as compared to the reference HClO4 electrolytes. Issues related to the activity benchmarking for these catalysts are discussed.

3.
Phys Chem Chem Phys ; 15(31): 12998-3004, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23817497

RESUMO

An electrochemical cell for the controllable modification and comprehensive electrochemical characterisation of model electro-catalytic surfaces has been developed. In-depth electrochemical characterisation of stationary electrodes as well as rotating disc electrode (RDE) measurements in hanging meniscus configuration becomes possible. Additionally, the temperature of the electrodes in contact with electrolytes can be accurately controlled between room temperature and 70-80 °C. It is of particular importance for model electro-catalytic studies that in one experimental set-up (i) electrochemical metal and non-metal deposition to adjust the amount of the foreign atoms at the surface, (ii) controllable thermal treatment to vary the position of these atoms at the surface and subsurface regions, and (iii) state-of-the-art techniques common in electrocatalysis to characterise the resulting samples are possible. The deposition and annealing procedures under various atmospheres allow accurate control over the position of the foreign atoms at the electrode surface as overlayers, surface alloys and sub-surface (or near-surface) alloys, where the solute element is preferentially located in the second atomic layer of the host metal. The cell enables us to perform all operations without exposing the samples to the laboratory atmosphere at any of the experimental stages. To demonstrate the performance and advantages of the developed cell, we use model experiments with Pt(111) single crystal electrodes and Pt(111) surfaces modified with (sub)monolayer amounts of copper.

4.
Nat Commun ; 7: 10990, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960565

RESUMO

Although the hydrogen evolution reaction (HER) is one of the fastest electrocatalytic reactions, modern polymer electrolyte membrane (PEM) electrolysers require larger platinum loadings (∼0.5-1.0 mg cm(-2)) than those in PEM fuel cell anodes and cathodes altogether (∼0.5 mg cm(-2)). Thus, catalyst optimization would help in substantially reducing the costs for hydrogen production using this technology. Here we show that the activity of platinum(111) electrodes towards HER is significantly enhanced with just monolayer amounts of copper. Positioning copper atoms into the subsurface layer of platinum weakens the surface binding of adsorbed H-intermediates and provides a twofold activity increase, surpassing the highest specific HER activities reported for acidic media under similar conditions, to the best of our knowledge. These improvements are rationalized using a simple model based on structure-sensitive hydrogen adsorption at platinum and copper-modified platinum surfaces. This model also solves a long-lasting puzzle in electrocatalysis, namely why polycrystalline platinum electrodes are more active than platinum(111) for the HER.


Assuntos
Cobre/química , Eletrólitos/química , Hidrogênio/química , Platina/química , Catálise , Eletroquímica , Eletrodos , Eletrólise , Membranas Artificiais , Propriedades de Superfície
5.
Science ; 350(6257): 185-9, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450207

RESUMO

A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.

6.
ACS Appl Mater Interfaces ; 6(24): 21851-8, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25102381

RESUMO

Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.


Assuntos
DNA/química , Eletricidade , Hibridização de Ácido Nucleico , Eletricidade Estática , Espectroscopia Dielétrica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA