Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(8): 9502-9514, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715900

RESUMO

Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane. On-axis modulation of greater than 30 dB is achieved at incident beam intensities as low as 100 W/cm2 with response times under 200 µs, at initial solution transparency above 70%. No evidence of laser-induced degradation is observed for the highest intensities used. Numerical modeling of experimental data reveals thermo-optic coefficients of up to -1.3 × 10-3 /K, which, to our knowledge, is the highest observed to date in such nanoparticle suspensions.

2.
Appl Opt ; 46(16): 3150-5, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514268

RESUMO

What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically scatter light to a photodetector where the signal is recorded in time. The detected scattering waveform is decoded to find the particle trajectory. A design is presented for the structured laser beam, and the accuracy of the technique in determining particle position is demonstrated. It is also demonstrated that the structured laser beam can be used to measure and then correct for the spatially dependent instrument-response function of an optical-scattering-based particle-sizing system for aerosols.

3.
Appl Opt ; 45(34): 8806-14, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17119578

RESUMO

Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.


Assuntos
Guerra Biológica/métodos , Técnicas Biossensoriais/instrumentação , Lasers , Espectrofotometria Ultravioleta/instrumentação , Toxinas Biológicas/análise , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA