Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 24(11): 2809-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877951

RESUMO

Seasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer. The analysis revealed a unique QTL for diapause induction on the X chromosome and several QTL for this and the other measured traits on the 4th chromosome. Flies' cold tolerance, egg-to-eclosion development time and juvenile body weight had several QTL also on the 2nd, 3rd and 5th chromosome, some of the peaks overlapping with each other. These results suggest that while the downstream output of females' photoperiodic diapause response is partly under a different genetic control from that of the other traits in the given day length, all traits also share some QTL, possibly involving genes with pleiotropic effects and/or multiple tightly linked genes. Nonoverlapping QTL detected for some of the traits also suggest that the traits are potentially capable of independent evolution, even though this may be restricted by epistatic interactions and/or correlations and trade-offs between the traits.


Assuntos
Drosophila/genética , Fotoperíodo , Locos de Características Quantitativas , Animais , Canadá , Cruzamentos Genéticos , Drosophila/fisiologia , Feminino , Finlândia , Ligação Genética , Genética Populacional , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Estações do Ano
2.
Trends Ecol Evol ; 35(11): 968-971, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873397

RESUMO

Speciation is a fundamental process shaping biodiversity. However, existing empirical methods often cannot provide key genetic and functional details required to validate speciation theory. New gene modification technologies can verify the causal functionality of genes with astonishing accuracy, helping resolve questions about how reproductive isolation evolves during speciation.


Assuntos
Especiação Genética , Isolamento Reprodutivo , Biodiversidade , Genômica
3.
Sci Rep ; 10(1): 11893, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681087

RESUMO

Pericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that evolutionary gene relocation between euchromatin and pericentric heterochromatin occurred with preservation of sites of insulation of BEAF-32 in evolutionarily distant species, i.e. D. melanogaster and D. virilis. Moreover, promoters of virtually all protein-coding genes located in heterochromatin in D. melanogaster are enriched with insulator proteins BEAF-32, GAF and dCTCF. Applying RNA-seq of a BEAF-32 mutant, we show that the impairment of BEAF-32 function has a complex effect on gene expression in D. melanogaster, affecting even those genes that lack BEAF-32 association in their promoters. We propose that conserved intrinsic properties of genes, such as sites of insulation near the promoter regions, may contribute to adaptation of genes to the heterochromatic environment and, hence, facilitate the evolutionary relocation of genes loci between euchromatin and heterochromatin.


Assuntos
Adaptação Biológica , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Evolução Molecular , Loci Gênicos , Heterocromatina/genética , Heterocromatina/metabolismo , Animais , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Mapeamento Cromossômico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/classificação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Motivos de Nucleotídeos , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição
4.
Genome Biol Evol ; 10(8): 2086-2101, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010752

RESUMO

The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales.


Assuntos
Drosophila/classificação , Drosophila/genética , Aclimatação , Animais , Temperatura Baixa , Diapausa , Drosophila/fisiologia , Genoma de Inseto , Anotação de Sequência Molecular , Filogenia
5.
J Insect Physiol ; 59(8): 745-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23702203

RESUMO

Reproductive diapause, and its correct timing, plays an important role in the life cycle of many insect species living in a seasonally varying environment at high latitudes. In the present paper we have documented variation in the critical day length (CDL) for adult reproductive diapause and the steepness of photoperiodic response curves (PPRCs) in seven clinal populations of Drosophila montana in Finland between the latitudes 61 and 67°N, paying special attention to variation in these traits within and between cline populations. The isofemale lines representing these populations showed a sharp transition from 0% to 100% in females' diapause incidence in the shortening day lengths, indicated by steep PPRCs. The mean CDL showed a clear latitudinal cline decreasing by 1.6h from North to South regardless of the age of the lines, variation within the populations (i.e. among lines) in this trait being up to 3h. The steepness of the PPRCs correlated with the age of the line and this trait showed no clear latitudinal cline. Further studies on a large number of lines from one D. montana population confirmed that while maintaining the flies in diapause preventing conditions in the laboratory has no effect on CDL, older lines had steeper PPRCs. High variation in CDL within and between D. montana cline populations is likely to be heritable and provide a good potential for the evolution of photoperiodic responses. Information on genetic variation in life-history traits, such as diapause, is of utmost importance for predicting the ability of insects to survive in seasonally changing environmental conditions and to respond to long term changes in the length of the growing period e.g. by postponing the timing of diapause towards shorter day length and later calendar date.


Assuntos
Diapausa de Inseto , Drosophila/fisiologia , Fotoperíodo , Animais , Clima Frio , Feminino , Variação Genética , Reprodução
6.
Trends Ecol Evol ; 27(1): 27-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21978464

RESUMO

Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.


Assuntos
Especificidade da Espécie , Genética
7.
Ecol Evol ; 1(2): 160-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22393492

RESUMO

Adaptation to seasonal changes in the northern hemisphere includes an ability to predict the forthcoming cold season from gradual changes in environmental cues early enough to prepare for the harsh winter conditions. The magnitude and speed of changes in these cues vary between the latitudes, which induces strong selection pressures for local adaptation.We studied adaptation to seasonal changes in Drosophila montana, a northern maltfly, by defining the photoperiodic conditions leading to adult reproductive diapause along a latitudinal cline in Finland and by measuring genetic differentiation and the amount of gene flow between the sampling sites with microsatellites. Our data revealed a clear correlation between the latitude and the critical day length (CDL), in which half of the females of different cline populations enter photoperiodic reproductive diapause. There was no sign of limited gene flow between the cline populations, even though these populations showed isolation by distance. Our results show that local adaptation may occur even in the presence of high gene flow, when selection for locally adaptive life-history traits is strong. A wide range of variation in the CDLs of the fly strains within and between the cline populations may be partly due to gene flow and partly due to the opposing selection pressures for fly reproduction and overwinter survival. This variation in the timing of diapause will enhance populations' survival over the years that differ in the severity of the winter and in the length of the warm period and may also help them respond to long-term changes in environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA