Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
2.
Proc Natl Acad Sci U S A ; 115(29): 7569-7574, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29954862

RESUMO

Elicitation of broadly neutralizing antibodies (bnAbs) is a leading strategy in rational vaccine design against antigenically diverse pathogens. Here, we studied a panel of monoclonal antibodies (mAbs) from mice immunized with the hepatitis C virus (HCV) envelope glycoproteins E1E2. Six of the mAbs recognize the conserved E2 antigenic site 412-423 (AS412) and cross-neutralize diverse HCV genotypes. Immunogenetic and structural analysis revealed that the antibodies originated from two different germline (GL) precursors and bind AS412 in a ß-hairpin conformation. Intriguingly, the anti-HCV activity of one antibody lineage is associated with maturation of the light chain (LC), whereas the other lineage is dependent on heavy-chain (HC) maturation. Crystal structures of GL precursors of the LC-dependent lineage in complex with AS412 offer critical insights into the maturation process of bnAbs to HCV, providing a scientific foundation for utilizing the mouse model to study AS412-targeting vaccine candidates.


Assuntos
Anticorpos Neutralizantes/química , Hepacivirus/química , Anticorpos Anti-Hepatite C/química , Cadeias Leves de Imunoglobulina/química , Anticorpos de Cadeia Única/química , Proteínas do Envelope Viral/química , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Anticorpos de Cadeia Única/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
3.
PLoS Pathog ; 13(12): e1006735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253863

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.


Assuntos
Hepacivirus/genética , Hepacivirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Hepacivirus/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Internalização do Vírus
4.
Proc Natl Acad Sci U S A ; 113(45): 12768-12773, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791120

RESUMO

Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

5.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404848

RESUMO

Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.IMPORTANCE In the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can aid in global surveillance of such viruses for potential spread and emerging threat to the human population.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/química , Animais , Austrália , Sítios de Ligação , Aves/virologia , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Modelos Moleculares , Polissacarídeos , Ligação Proteica , Conformação Proteica , Receptores Virais/metabolismo , Sibéria
6.
J Biol Chem ; 288(27): 19537-47, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23671282

RESUMO

Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Peptídeos/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação/fisiologia , Especificidade por Substrato
7.
Cell Host Microbe ; 30(4): 480-482, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421348

RESUMO

The emergence of novel avian-origin influenza viruses to circulate in humans has remained a significant threat to public health that might lead to the next pandemic. Studying the receptor specificity of novel influenza subtypes was a crucial milestone in my career path as a young scientist.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Vírus da Influenza A/genética , Pandemias
8.
Artigo em Inglês | MEDLINE | ID: mdl-21821885

RESUMO

The p38 MAP kinase pathway is an essential component of numerous cellular signalling networks which are usually activated in response to extracellular environmental stress conditions. In addition to the canonical activation, several alternative activation pathways have been identified for p38; one of these, in which p38 is initially phosphorylated on Tyr323 and consequently autoactivated, is exclusive to T cells and is induced by TCR activation. Intrinsically active and inactive mutants at position 323 have been developed in order to evaluate the structural changes that occur upon TCR-induced activation. In order to promote crystal growth, cross streak-seeding techniques were utilized. This technique has gained popularity in promoting crystal growth when spontaneous nucleation induces critical defects or is being entirely hindered. The crystal characteristics of some mutants were highly similar to those of the wild-type source seeds (form A). In contrast, other mutants crystallized spontaneously with a different space group and molecular packing (form B). One of the active mutants (Y323T) crystallized in both crystal forms, displaying different packing characteristics and significant differences in molecular conformation that were clearly dictated by the source seeds. This implies that the source seeds used in cross streak-seeding could, in some cases, impose bias on the structural outcome of the studied molecule. Such incidents could occur when the conformational freedom permits crystal packing while not reflecting the authentic structure.


Assuntos
Proteínas Quinases p38 Ativadas por Mitógeno/química , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064532

RESUMO

Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.


Assuntos
Epitopos/imunologia , Hepacivirus/imunologia , Antígenos da Hepatite C/química , Desenvolvimento de Vacinas , Vacinas contra Hepatite Viral/química , Animais , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Epitopos/química , Genótipo , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Camundongos , Eficácia de Vacinas , Vacinas contra Hepatite Viral/análise
10.
Sci Adv ; 6(16): eaaz6225, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494617

RESUMO

Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are responsible for cell entry, with E2 being the major target of neutralizing antibodies (NAbs). Here, we present a comprehensive strategy for B cell-based HCV vaccine development through E2 optimization and nanoparticle display. We redesigned variable region 2 in a truncated form (tVR2) on E2 cores derived from genotypes 1a and 6a, resulting in improved stability and antigenicity. Crystal structures of three optimized E2 cores with human cross-genotype NAbs (AR3s) revealed how the modified tVR2 stabilizes E2 without altering key neutralizing epitopes. We then displayed these E2 cores on 24- and 60-meric nanoparticles and achieved substantial yield and purity, as well as enhanced antigenicity. In mice, these nanoparticles elicited more effective NAb responses than soluble E2 cores. Next-generation sequencing (NGS) defined distinct B cell patterns associated with nanoparticle-induced antibody responses, which target the conserved neutralizing epitopes on E2 and cross-neutralize HCV genotypes.


Assuntos
Hepatite C , Nanopartículas , Vacinas , Animais , Anticorpos Neutralizantes , Epitopos , Hepacivirus , Anticorpos Anti-Hepatite C , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA