Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(5): 1845-1852, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35080398

RESUMO

Highly wetting and nonwetting substrates have been widely used in fogwater collection systems for enhanced water harvesting. In this work, fog harvesting substrates comprising PVC strips of different wetting properties and widths ranging from 1-5 mm were vertically aligned and spaced apart at regular intervals to give the same solid area fraction of 0.8. Evaluation of the water collection efficiencies of the tested configurations revealed that 1 mm wide superhydrophilic strips was the most efficient, achieving double the amount of water harvested compared with 2.8 mm wide strips. This finding was attributed to the low Stokes numbers of the aerosol particle distribution of the fog which tended to result in them being brought by the flow streamlines toward the air gaps between the strips. Stagnant flow regions at the edges of each strip, revealed through potential flow calculations, then caused higher liquid imbibition and impaction there for water harvesting. It was also found that the Cassie nonwetting substrates that originally exhibited contact angles of 161° transformed to Wenzel wetting with zero contact angle within 60 min of fog interception. Optical profilometry revealed no obvious difference in surface roughness between the central region and edges of the strips, indicating that surface morphology was unlikely to be a contributing factor for enhanced water collection at the edges. The findings here indicated that highly wetting vertical strip architectures with narrow widths (1 mm) were favorable over wider strips for water harvesting provided that clogging and re-entrainment were not significant factors.

2.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494823

RESUMO

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Assuntos
Glucagon , Hipoglicemia , Cisteína , Humanos
3.
Eur Phys J E Soft Matter ; 40(8): 72, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28803430

RESUMO

A key event in arthritis pathogenesis is the degradation of aggrecan, the major component in articular cartilage. In this work, we investigate the effects of stimulated aggrecanolysis on the morphological and nanomechanical properties of cartilage harvested from wild-type mice and aggrecanase-resistant mutant mice named "Jaffa". The cartilages were native or were subjected to stimulated aggrecanolysis by interleukin-1[Formula: see text] (IL-1[Formula: see text]) treatment. The nanoscale morphological and mechanical properties of the sectioned cartilages were measured by using a sharp probe by atomic force microscopy (AFM). The IL-1[Formula: see text] treatment resulted in a higher nanoroughess and stiffness of the cartilage from wild-type mice. However, the same treatment did not lead to any measurable change in the nanoroughness or stiffness of the cartilage from mutant mice Jaffa. This suggests that blocking aggrecanolysis by genetic modification has created the stability in the structures and mechanical properties of the cartilage at nanoscale. The present study provides insight into the mechanism of aggrecan degradation, which can complement the examination by biochemical and histological techniques.


Assuntos
Agrecanas/metabolismo , Cartilagem Articular/química , Mutação , Agrecanas/química , Agrecanas/genética , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/ultraestrutura , Elasticidade , Endopeptidases/metabolismo , Interleucina-1/metabolismo , Camundongos , Proteólise
4.
Nanotechnology ; 25(41): 415101, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25257833

RESUMO

We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the 'last-line' antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.


Assuntos
Klebsiella pneumoniae/química , Klebsiella pneumoniae/ultraestrutura , Microscopia de Força Atômica/métodos , Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Parede Celular , Farmacorresistência Bacteriana Múltipla , Elasticidade/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Íons , Klebsiella pneumoniae/efeitos dos fármacos , Polimixina B/farmacologia
5.
Micromachines (Basel) ; 14(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37512618

RESUMO

Digital microfluidics, which relies on the movement of drops, is relatively immune to clogging problems, making it suited for micro-reactor applications. Here, graphene oxide paper of 100 µm thickness, fabricated by blade coating sedimented dispersions onto roughened substrates, followed by drying and mechanical exfoliation, was found to be relatively free of cracks and curling. It also exhibited high wettability and elasto-capillary characteristics. Possessing low enough stiffness, it could rapidly and totally self-wrap water drops of 20 µL volume placed 2 mm from its edge when oriented between 0 and 60° to the horizontal. This complete wrapping behavior allowed drops to be translated via movement of the paper over long distances without dislodgement notwithstanding accelerations and decelerations. An amount of 2 drops that were wrapped with separate papers, when collided with each other at speeds up to 0.64 m/s, were found to eschew coalescence. This portends the development of robust digital microfluidic approaches for micro-reactors.

6.
Nat Commun ; 14(1): 236, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646676

RESUMO

Although two-dimensional (2D) materials have grown into an extended family that accommodates hundreds of members and have demonstrated promising advantages in many fields, their practical applications are still hindered by the lack of scalable high-yield production of monolayer products. Here, we show that scalable production of monolayer nanosheets can be achieved by a facile ball-milling exfoliation method with the assistance of viscous polyethyleneimine (PEI) liquid. As a demonstration, graphite is effectively exfoliated into graphene nanosheets, achieving a high monolayer percentage of 97.9% at a yield of 78.3%. The universality of this technique is also proven by successfully exfoliating other types of representative layered materials with different structures, such as carbon nitride, covalent organic framework, zeolitic imidazolate framework and hexagonal boron nitride. This scalable exfoliation technique for monolayer nanosheets could catalyze the synthesis and industrialization of 2D nanosheet materials.

7.
Langmuir ; 28(28): 10471-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22765767

RESUMO

Contamination has previously been invoked to explain the flat shape and the long lifetimes of interfacial nanobubbles (INBs). In this study, the effects of surfactants on the formation and the stability of INBs were investigated when surfactants were added to the system before, during, and after the standard solvent exchange procedure (SSEP) for the formation of INBs. The solutions of sodium dodecyl sulfate (SDS) above critical micelle concentration were found to have little effect on the bubble stability. Likewise, cleaning of the substrate with a surfactant solution had little effect. In contrast, addition of a water-insoluble surfactant during the formation dramatically reduced the INBs. Finally, repeated application of SSEP to surfactant-coated substrates progressively rinsed the surfactant off the system. Thus, we found no evidence to support the hypothesis that (1) INBs are stabilized by a layer of insoluble organic contaminant or that (2) SSEP introduces surface-active materials to the system that could stabilize INBs.


Assuntos
Nanopartículas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Luz , Micelas , Tamanho da Partícula
8.
ACS Appl Mater Interfaces ; 14(17): 19878-19888, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451830

RESUMO

Size, shape, and chemical properties of nanoparticles are powerful tools to modulate the optical and physicochemical properties of a particle suspension. Despite having many methods to synthesize anisotropic nanoparticles, often there are challenges in terms of controlling the polydispersity, shape, size, or composition of anisotropic nanoparticles. This work has been inspired by the potential for developing a unique pathway to make different shaped monodispersed anisotropic nano- and microparticles with large flexibility in material choice. Compared to existing methods, this state-of-the-art nanolithographic method is fast, easy to prototype, and much simple in terms of its mechanical requirement. We show that this technique has been efficiently used to make a variety of anisotropic nano- and microparticles of different shapes, such as triangular prisms, ovals, disks, flowers, and stairs following the same pathway, at the same time showing the potential of being flexible with respect to the composition of the particles. The thermal scanning probe lithographic method in combination with dry reactive ion etching was used to make two-dimensional and three-dimensional templates for the fabrication of anisotropic nano- and microparticles. Deposition of different metal/metal oxides by the electron-beam evaporation method onto these templates allowed us to fabricate a range of nanomaterials according to the required functionality in potential applications. The particles were characterized by atomic force microscopy, He-ion microscopy, scanning electron microscopy, and dynamic light scattering to ensure that the developed method is reproducible, flexible, and robust in choosing the shapes for making monodispersed anisotropic nanoparticles with great control over shape and size.

9.
Adv Mater ; 34(5): e2105630, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773416

RESUMO

Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported. Although the soft polystyrene (PS) is only 3 nm thick, it is elastic, robust, and permeable to aqueous solutes, while significantly slowing down their diffusion. PEN-associated palladium (Pd) crystallization follows a diffusion-controlled zero-order kinetics rather than a reaction-controlled first-order kinetics in bulk solution. Each individual PEN reactor has a volume in the zeptoliter range, which offers a unique confined environment, enabling a directional inward crystallization, in contrast to the conventional outward nucleation/growth that occurs in an unconfined bulk solution. This strategy makes it possible to generate a set of mono-, bi-, and trimetallic, and even semiconductor nanocrystals with tunable interior structures, which are difficult to achieve with normal systems based on bulk solutions.


Assuntos
Nanopartículas , Pontos Quânticos , Cristalização , Nanopartículas/química , Nanotecnologia , Paládio/química
10.
Langmuir ; 27(6): 2536-44, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21299193

RESUMO

The nature of the interface of drops or bubbles and the dynamic interactions between them often mediate or control macroscopic behavior in the formulation and processing of emulsions and foams in solvent extraction, froth flotation, food, personal care products, and microfluidics as well as in many biological processes. Characterization of these interfaces is often complicated due to the small size of the drops and bubbles that may range from the micrometer scale to hundreds of micrometers. We report the direct measurement of the surface or interfacial tension of drops or bubbles in aqueous solutions as a function of the concentration and type of surfactant, using atomic force microscopy (AFM) and a recently developed nanoneedle AFM cantilever. We also demonstrate the viability of imaging drops or bubbles of this size in both tapping and contact imaging modes through a systematic study of parameters, including cantilever spring constant, tip geometry, imaging force, and feedback settings as well as the AFM manufacturer. The imaging study demonstrates the viability of using AFM to visualize complex structures at the oil-water or air-water interface as well as how concentric ring artifacts observed in the literature are the result of earlier AFM instrument limitations.

11.
ACS Appl Mater Interfaces ; 11(21): 18988-18994, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31051073

RESUMO

Thermal scanning probe lithography (t-SPL) is a nanofabrication technique in which an immobilized thermolabile resist, such as polyphthalaldehyde (PPA), is locally vaporized by a heated atomic force microscope tip. Compared with other nanofabrication techniques, such as soft lithography and nanoimprinting lithography, t-SPL is more efficient and convenient as it does not involve time-consuming mask productions or complicated etching procedures, making it a promising candidate technique for the fast prototyping of nanoscale topographies for biological studies. Here, we established the direct use of PPA-coated surfaces as a cell culture substrate. We showed that PPA is biocompatible and that the deposition of allylamine by plasma polymerization on a silicon wafer before PPA coating can stabilize the immobilization of PPA in aqueous solutions. When seeded on PPA-coated surfaces, human mesenchymal stem cells (MSC) adhered, spread, and proliferated in a manner indistinguishable from cells cultured on glass surfaces. This allowed us to subsequently use t-SPL to generate nanotopographies for cell culture experiments. As a proof of concept, we analyzed the surface topography of bovine tendon sections, previously shown to induce morphogenesis and differentiation of MSC, by means of atomic force microscopy, and then "wrote" topographical data on PPA by means of t-SPL. The resulting substrate, matching the native tissue topography on the nanoscale, was directly used for MSC culture. The t-SPL substrate induced similar changes in cell morphology and focal adhesion formation in the MSC compared to native tendon sections, suggesting that t-SPL can rapidly generate cell culture substrates with complex and spatially accurate topographical signals. This technique may greatly accelerate the prototyping of models for the study of cell-matrix interactions.


Assuntos
Impressão , Engenharia Tecidual/métodos , Alilamina/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Gases em Plasma/farmacologia , Polimerização , Tendões/efeitos dos fármacos , Tendões/fisiologia
12.
Biosens Bioelectron ; 103: 26-31, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29277011

RESUMO

Using heme entrapped in recombinant silk films, we have produced 3rd generation biosensors, which allow direct electron transfer from the heme center to an electrode avoiding the need for electron mediators. Here, we demonstrate the use of these heme-silk films for the detection of nitric oxide (NO) at nanomolar levels in the presence and absence of oxygen. The sensor was prepared by drop-casting a silk solution on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT) followed by infusion with heme. The sensor was characterized by cyclic voltammetry and showed well defined and reversible Fe+/ Fe3+ redox couple activity, with NO detection by oxidation at potentials above +0.45V or reduction at potentials below - 0.7V. Evaluation of the effect of pH on the sensor response to NO reduction indicated a maximum response at pH 3. The sensor showed good linearity in the concentration range from 19 to 190nM (R2 = 0.99) with a detection limit of 2nM. The sensor had excellent selectivity towards NO with no or negligible interference from oxygen, nitrite, nitrate, dopamine and ascorbic acid and retained 86% of response after 2 months of operation and storage at room temperature.


Assuntos
Técnicas Biossensoriais , Heme/química , Óxido Nítrico/isolamento & purificação , Seda/química , Catálise , Dopamina/química , Técnicas Eletroquímicas/métodos , Eletrodos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanotubos de Carbono/química , Óxido Nítrico/química , Oxirredução
13.
J Colloid Interface Sci ; 285(1): 373-81, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15797435

RESUMO

The phase behavior of the water/poly(oxyethylene)-poly(dimethylsiloxane) copolymer (Si25C3EO51.6)/pentaoxyethylene dodecyl ether (C12EO5) ternary system has been studied. Both the silicone copolymer and the surfactant have equal volumes of hydrophilic and lipophilic parts; i.e., these are balanced amphiphiles. Although only a lamellar phase is observed in water-Si25C3EO51.6 and water-C12EO5 binary systems, a variety of liquid crystalline phases, including normal micellar cubic (I1), hexagonal (H1), bicontinuous cubic (V1), lamellar (L(alpha)), reverse bicontinuous cubic (V2), and reverse hexagonal (H2), are observed in the copolymer-rich region of the ternary phase diagram. The small C12EO5 molecules dissolve at the hydrophobic interface in the thick bilayer of the Si25C3EO51.6 L(alpha) phase occupying a large area of the total interface of the aggregates and modulate the curvature of the aggregates. Hence a variety of self-assembled structures are observed. In contrast, Si25C3EO51.6 is not dissolved in the thin bilayer of the C12EO5 lamellar phase (L'(alpha)). Hence, the C12EO5 L'(alpha) phase coexists with copolymer-rich L(alpha) and H2 phases. Consequently, small surfactant molecules are dissolved in a large silicone copolymer aggregate to induce a change in layer curvature, but a large copolymer molecule is hard to incorporate with surfactant aggregates.

14.
Faraday Discuss ; 143: 151-68; discussion 169-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20334101

RESUMO

We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.


Assuntos
Ar , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Água/química , Cristalização/métodos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA