RESUMO
In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.
Assuntos
Marchantia , Oxilipinas , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ligantes , Marchantia/química , Marchantia/genética , Mutação , Oxilipinas/metabolismoRESUMO
The oxylipin plant hormone (3R,7S)-jasmonoyl-l-isoleucine [or (+)-7-iso-jasmonoyl-l-isoleucine, JA-Ile] is widely recognized as a plant defense hormone against pathogens and chewing insects. The metabolism of JA-Ile into 12-OH-JA-Ile and 12-COOH-JA-Ile is the central mechanism for the inactivation of JA signaling. Recently, 12-OH-JA-Ile was reported to function as a ligand for the JA-Ile co-receptor COI1-JAZ. However, in previous studies, '12-OH-JA-Ile' used was a mixture of four stereoisomers, the naturally occurring cis-isomer (3R,7S)-12-OH-JA-Ile and the trans-isomer (3R,7R)-12-OH-JA-Ile, and the unnatural cis-isomer (3S,7R)-12-OH-JA-Ile and the trans-isomer (3S,7S)-12-OH-JA-Ile. Thus, the genuine bioactive form of 12-OH-JA-Ile has not yet been identified. In the present study, we prepared pure stereoisomers of 12-OH-JA-Ile and identified (3R,7S)-12-OH-JA-Ile as the naturally occurring bioactive form of 12-OH-JA-Ile and found that it binds to COI1-JAZ9 as effectively as (3R,7S)-JA-Ile. In addition, we revealed that the unnatural trans-isomer (3S,7S)-12-OH-JA-l-Ile functions as another bioactive isomer. The pure (3R,7S)-12-OH-JA-Ile causes partial JA-responsive gene expression without affecting the expression of JAZ8/10, which is involved in the negative feedback regulation of JA-signaling. Thus, (3R,7S)-12-OH-JA-Ile could cause weak and sustainable expression of certain JA-responsive genes until the catabolism of (3R,7S)-12-OH-JA-Ile into (3R,7S)-12-COOH-JA-Ile occurs. The use of chemically pure (3R,7S)-12-OH-JA-Ile confirmed the genuine biological activities of '12-OH-JA-Ile' by excluding the possible effects of other stereoisomers. A chemical supply of pure (3R,7S)-12-OH-JA-Ile with an exact bioactivity profile will enable further detailed studies of the unique role of 12-OH-JA-Ile in planta.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Isoleucina , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estereoisomerismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The 33rd International Conference on Arabidopsis Research (ICAR2023) was held at Makuhari Messe International Conference Hall in Chiba prefecture from June 5 to 9, 2023. This annual conference, which rotates among hosts in North America, Asia-Oceania, and Europe, covers the full range of plant biology research involving Arabidopsis and other plant species. The conference hosted more than 1200 participants, including approximately 800 international attendees from 42 countries (or regions), and featured about 900 oral and poster presentations. Reflecting the conference theme, "Arabidopsis for Sustainable Development Goals (SDGs)," there were numerous exemplary presentations regarding basic plant science using Arabidopsis and translational research conducted to achieve SDGs by exploiting the knowledge gained from Arabidopsis to improve crop production. The conference concluded on a high note, with more than 99% of survey respondents expressing their general satisfaction with ICAR2023. This report aims to summarize the organization, objectives, and outcomes of the conference.
Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , ÁsiaRESUMO
cis-(+)-12-Oxo-phytodienoic acid (cis-OPDA) is a significant plant oxylipin, known as a biosynthetic precursor of the plant hormone jasmonoyl-l-isoleucine (JA-Ile), and a bioactive substance in plant environmental stresses. A recent study showed that a plant dioxygenase, Jasmonate Induced Dioxygenase 1 (JID1), converts cis-OPDA into an unidentified metabolite termed "modified-OPDA (mo-OPDA)" in Arabidopsis thaliana. Here, using ultra-performance liquid chromatography coupled with triple quad mass spectrometry (UPLC-MS/MS) experiment, the chemical identity of "mo-OPDA" was demonstrated and identified as a conjugate between cis-OPDA and 2-mercaptoethanol (cis-OPDA-2ME), an artifact produced by Michael addition during the JID1 digestion of cis-OPDA. However, previous reports demonstrated a decreased accumulation of cis-OPDA in the JID1-OE line, suggesting the existence of an unknown JID1-mediated mechanism regulating the level of cis-OPDA in A. thaliana.
Assuntos
Arabidopsis , Ácidos Graxos Insaturados , Espectrometria de Massas em Tandem , Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Cromatografia Líquida de Alta Pressão , Mercaptoetanol/química , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxilipinas/metabolismo , Oxilipinas/química , Ciclopentanos/química , Ciclopentanos/metabolismoRESUMO
A network of protein-protein interactions (PPI) is involved in the activation of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), a plant hormone that regulates plant defense responses as well as plant growth and development. In the absence of JA-Ile, inhibitory protein jasmonate-ZIM-domain (JAZ) represses JA-related transcription factors, including a master regulator, MYC. In contrast, when JA-Ile accumulates in response to environmental stresses, PPI occurs between JAZ and the F-box protein COI1, which triggers JAZ degradation, resulting in derepressed MYC that can interact with the transcriptional mediator MED25 and upregulate JA-Ile-related gene expression. Activated JA signaling is eventually suppressed through the catabolism of JA-Ile and feedback suppression by JAZ splice variants containing a cryptic MYC-interacting domain (CMID). However, the detailed structural basis of some PPIs involved in JA-Ile signaling remains unclear. Herein, we analyzed PPI between MYC3 and MED25, focusing on the key interactions that activate the JA-Ile signaling pathway. Biochemical assays revealed that a short binding domain of MED25 (CMIDM) is responsible for the interaction with MYC, and that a bipartite interaction is critical for the formation of a stable complex. We also show the mode of interaction between MED25 and MYC is closely related to that of CMID and MYC. In addition, quantitative analyses on the binding of MYC3-JAZs and MYC3-MED25 revealed the order of binding affinity as JAZJas < MED25CMIDM < JAZCMID, suggesting a mechanism for how the transcriptional machinery causes activation and negative feedback regulation during jasmonate signaling. These results further illuminate the transcriptional machinery responsible for JA-Ile signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Proteínas de Ligação a DNA , Isoleucina/análogos & derivados , Transativadores , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transativadores/metabolismoRESUMO
Jasmonic acid (JA) regulates plant growth, development and stress responses. Coronatine insensitive 1 (COI1) and jasmonate zinc-finger inflorescence meristem-domain (JAZ) proteins form a receptor complex for jasmonoyl-l-isoleucine, a biologically active form of JA. Three COIs (OsCOI1a, OsCOI1b and OsCOI2) are encoded in the rice genome. In the present study, we generated mutants for each rice COI gene using genome editing to reveal the physiological functions of the three rice COIs. The oscoi2 mutants, but not the oscoi1a and oscoi1b mutants, exhibited severely low fertility, indicating the crucial role of OsCOI2 in rice fertility. Transcriptomic analysis revealed that the transcriptional changes after methyl jasmonate (MeJA) treatment were moderate in the leaves of oscoi2 mutants compared to those in the wild type or oscoi1a and oscoi1b mutants. MeJA-induced chlorophyll degradation and accumulation of antimicrobial secondary metabolites were suppressed in oscoi2 mutants. These results indicate that OsCOI2 plays a central role in JA response in rice leaves. In contrast, the assessment of growth inhibition upon exogenous application of JA to seedlings of each mutant revealed that rice COIs are redundantly involved in shoot growth, whereas OsCOI2 plays a primary role in root growth. In addition, a co-immunoprecipitation assay showed that OsJAZ2 and OsJAZ5 containing divergent Jas motifs physically interacted only with OsCOI2, whereas OsJAZ4 with a canonical Jas motif interacts with all three rice COIs. The present study demonstrated the functional diversity of rice COIs, thereby providing clues to the mechanisms regulating the various physiological functions of JA.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Edição de Genes , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile ß-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to ß-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to ß-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Compostos Orgânicos Voláteis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Histona Desacetilases/metabolismo , Histonas/metabolismo , Plantas/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismoRESUMO
The liver X receptor (LXR) can enhance cholesterol transporters, which could remove excess cholesterol from foam cells in atheromas. LXR has two subtypes: LXRα, which aggravates hepatic lipid accumulation, and LXRß, which does not. In 2018, ouabagenin (OBG) was reported as a potential LXRß-specific agonist. We aimed to examine whether OBG specifically affects LXRß in nonalcoholic steatohepatitis (NASH); it did not aggravate hepatic steatosis and can suppress the development of atherosclerosis. SHRSP5/Dmcr rats fed a high-fat and high-cholesterol diet were divided into four groups as follows: (I) L-NAME group, (II) L-NAME/OBG group, (III) OBG (-) group, and (IV) OBG (+) group. All groups' rats were intraperitoneally administered L-NAME. The L-NAME/OBG group's rats were intraperitoneally administered OBG and L-NAME simultaneously. After L-NAME administration, the OBG (+) group's rats were administered OBG, while the OBG (-) group's rats were not. Although all rats developed NASH, OBG did not exacerbate steatosis (L-NAME/OBG and OBG (+) groups). In addition, endothelial cells were protected in the L-NAME/OBG group and foam cells in the atheroma were reduced in the OBG (+) group. OBG is an LXRß-specific agonist and has a potential therapeutic effect on atherosclerosis without developing lipid accumulation in the liver.
Assuntos
Aterosclerose , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores X do Fígado , NG-Nitroarginina Metil Éster , Células Endoteliais , Ratos Endogâmicos SHR , Dieta Hiperlipídica/efeitos adversos , Fígado , Aterosclerose/tratamento farmacológico , ColesterolRESUMO
(3R, 7S)-jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived plant hormone that regulates plant responses, including biotic/abiotic stress adaptation. In the plant cells, JA-Ile is perceived by COI1-JAZ co-receptor by causing protein-protein interaction between COI1 and JAZ proteins to trigger gene expressions. In this study, we focused on Oryza sativa, a model monocot and an important crop, with 45 possible OsCOI-OsJAZ co-receptor pairs composed of three OsCOI homologs (OsCOI1a, OsCOI1b, and OsCOI2) and 15 OsJAZ homologs. We performed fluorescein anisotropy and pull-down assays to examine the affinity between JA-Ile and OsCOI1a/1b/2-OsJAZ1-15 co-receptor pairs. The results revealed a remarkable difference in the modes of ligand perception by OsCOI1a/1b and OsCOI2. Recently, the unique function of OsCOI2 in some of the JA-responses were revealed. Our current results will lead to the possible development of OsCOI2-selective synthetic ligand.
Assuntos
Proteínas de Arabidopsis , Oryza , Proteínas de Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ligantes , Plantas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/genética , Isoleucina/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxilipinas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The phytohormone (+)-7-iso-jasmonoyl-l-isoleucine regulates many developmental and stress responses in plants and induces protein-protein interactions between COI1, the F-box component of E3 ubiquitin ligase, and jasmonate ZIM domain (JAZ) repressors. These interactions cause JAZ degradation and activate jasmonate (JA), leading to plant defense responses, growth inhibition, and senescence. Thirteen JAZ subtypes are encoded in the Arabidopsis thaliana genome, but a detailed understanding of the physiological functions of these JAZ subtypes remains unclear, partially because of the genetic redundancy of JAZ genes. One strategy to elucidate the complex JA signaling pathways is to develop a reliable and comprehensive binding assay system of the ligands with all combinations of the co-receptors. Herein, we report the development of a fluorescence anisotropy-based in vitro binding assay system to screen for the ligands of the COI1-JAZ co-receptors. Our assay enabled the first quantitative analysis of the affinity values and JAZ-subtype selectivity of various endogenous JA derivatives, such as coronatine, jasmonic acid, and 12-hydroxyjasmonoyl-l-isoleucine. Because of its high signal-to-noise ratio and convenient mix-and-read assay system, our screening approach can be used in plate reader-based assays of both agonists and antagonists of COI1-JAZ co-receptors.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/metabolismo , Polarização de Fluorescência/métodos , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Ligantes , Modelos Moleculares , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica , Mapas de Interação de ProteínasRESUMO
A facile, efficient, and scalable synthesis of optically pure coronafacic acid by resolution of racemic coronafacic acid obtained using an improved version of Watson's method has been developed. By optimizing the boron-mediated aldol reaction of Watson, we were able to prepare 2.1 g of racemic coronafacic acid. This was coupled with (S)-4-isopropyl-2-oxazolidinone to give a mixture of diastereomeric coronafacyl oxazolidinones, which were readily separable by silica-gel column chromatography to give 630 mg of optically pure (+)-coronafacic acid.
RESUMO
Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive performance, senescence, secondary metabolite productions, and defense against both necrotrophic pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology have greatly informed the bioscience of jasmonate, including the development of chemical tools such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
Assuntos
Proteínas de Arabidopsis/química , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/química , Receptores de Superfície Celular/química , Proteínas Repressoras/química , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/química , Oxilipinas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Nyctinasty is the circadian rhythmic nastic movement of leguminous plants in response to the onset of darkness, a unique and intriguing phenomenon that has attracted attention for centuries. The movement itself is caused by the asymmetric volume change of motor cells between the adaxial and abaxial sides of the leaflet. Recently, we identified the ion channels responsible for the volume change of motor cells during the leaf-opening process of Samanea saman; the asymmetric expression of SsSLAH1, which is under the control of SsCCA1, was found to play a key role in this process. Here, we summarize the history of the study of nyctinasty, our current results and several insights for further study.
Assuntos
Ritmo Circadiano/fisiologia , Escuridão , Movimento , Fenômenos Fisiológicos Vegetais , Animais , Canais Iônicos/metabolismo , Modelos BiológicosRESUMO
Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de SinaisRESUMO
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Abscísico/farmacologia , Acilação , Motivos de Aminoácidos , Animais , Ânions , Arabidopsis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Lipídeos/química , Modelos Biológicos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nicotiana/enzimologia , XenopusRESUMO
Histone acetylation is an essential process in the epigenetic regulation of diverse biological processes, including environmental stress responses in plants. Previously, our research group identified a histone deacetylase (HDAC) inhibitor (HDI) that confers salt tolerance in Arabidopsis (Arabidopsis thaliana). In this study, we demonstrate that class I HDAC (HDA19) and class II HDACs (HDA5/14/15/18) control responses to salt stress through different pathways. The screening of 12 different selective HDIs indicated that seven newly reported HDIs enhance salt tolerance. Genetic analysis, based on a pharmacological study, identified which HDACs function in salinity stress tolerance. In the wild-type Columbia-0 background, hda19 plants exhibit tolerance to high-salinity stress, while hda5/14/15/18 plants exhibit hypersensitivity to salt stress. Transcriptome analysis revealed that the effect of HDA19 deficiency on the response to salinity stress is distinct from that of HDA5/14/15/18 deficiencies. In hda19 plants, the expression levels of stress tolerance-related genes, late embryogenesis abundant proteins that prevent protein aggregation and positive regulators such as ABI5 and NAC019 in abscisic acid signaling, were induced strongly relative to the wild type. Neither of these elements was up-regulated in the hda5/14/15/18 plants. The mutagenesis of HDA19 by genome editing in the hda5/14/15/18 plants enhanced salt tolerance, suggesting that suppression of HDA19 masks the phenotype caused by the suppression of class II HDACs in the salinity stress response. Collectively, our results demonstrate that HDIs that inhibit class I HDACs allow the rescue of plants from salinity stress regardless of their selectivity, and they provide insight into the hierarchal regulation of environmental stress responses through HDAC isoforms.
Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Plantas/metabolismo , Salinidade , Sistemas CRISPR-Cas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Desacetilases/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Cloreto de Sódio/toxicidade , Estresse FisiológicoRESUMO
Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.
Assuntos
Polaridade Celular , Quimiocina CCL2/metabolismo , Macrófagos/patologia , Nervos Periféricos/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Criança , Nervo Facial/fisiopatologia , Feminino , Gânglios Espinais/metabolismo , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Regeneração Nervosa , Crescimento Neuronal , Nervos Periféricos/fisiopatologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Células de Schwann , Transdução de Sinais , Células-Tronco/metabolismo , Dente Decíduo/citologiaRESUMO
We previously reported that coronatine, a virulence factor of plant bacteria, facilitates bacterial infection through an ER (endoplasmic reticulum)-mediated, non-canonical mechanism in the model dicot plant, Arabidopsis thaliana. Here, we report that this same ER-mechanism is ubiquitous among dicots and monocots, and works by affecting the ethylene signaling pathway widely found in plants. The subcellular localization of coronatine by the alkyne-tag Raman imaging (ATRI) approach provided a convincing clue.
Assuntos
Aminoácidos/análise , Toxinas Bacterianas/análise , Commelina/microbiologia , Indenos/análise , Doenças das Plantas/microbiologia , Análise Espectral Raman/métodos , Alcinos/química , Arabidopsis/química , Arabidopsis/microbiologia , Commelina/química , Retículo Endoplasmático/química , Retículo Endoplasmático/microbiologia , Simulação de Acoplamento MolecularRESUMO
Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS.