Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 679: 58-65, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37673003

RESUMO

The metabolites in the plasma serve as potential biomarkers of disease. We previously established an early-onset diabetes mouse model, Ins2+/Q104del Kuma mice, under a severe immune-deficient (Rag-2/Jak3 double-deficient in BALB/c) background. Here, we revealed the differences in plasma amino acid profiles between Kuma and the wild-type mice. We observed an early reduction in glucogenic and ketogenic amino acids, a late increase in branched-chain amino acids (BCAAs) and succinyl CoA-related amino acids, and a trend of increasing ketogenic amino acids in Kuma mice than in the wild-type mice. Kuma mice exhibited hyperglucagonemia at high blood glucose, leading to perturbations in plasma amino acid profiles. The reversal of blood glucose by islet transplantation normalized the increases of the BCAAs and several aspects of the altered metabolic profiles in Kuma mice. Our results indicate that the Kuma mice are a unique animal model to study the link between plasma amino acid profile and the progression of diabetes for monitoring the therapeutic effects.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Camundongos , Animais , Glicemia/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo
2.
Diabetes ; 71(9): 1946-1961, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728809

RESUMO

There is increasing evidence that dopamine (DA) functions as a negative regulator of glucose-stimulated insulin secretion; however, the underlying molecular mechanism remains unknown. Using total internal reflection fluorescence microscopy, we monitored insulin granule exocytosis in primary islet cells to dissect the effect of DA. We found that D1 receptor antagonists rescued the DA-mediated inhibition of glucose-stimulated calcium (Ca2+) flux, thereby suggesting a role of D1 in the DA-mediated inhibition of insulin secretion. Overexpression of D2, but not D1, alone exerted an inhibitory and toxic effect that abolished the glucose-stimulated Ca2+ influx and insulin secretion in ß-cells. Proximity ligation and Western blot assays revealed that D1 and D2 form heteromers in ß-cells. Treatment with a D1-D2 heteromer agonist, SKF83959, transiently inhibited glucose-induced Ca2+ influx and insulin granule exocytosis. Coexpression of D1 and D2 enabled ß-cells to bypass the toxic effect of D2 overexpression. DA transiently inhibited glucose-stimulated Ca2+ flux and insulin exocytosis by activating the D1-D2 heteromer. We conclude that D1 protects ß-cells from the harmful effects of DA by modulating D2 signaling. The finding will contribute to our understanding of the DA signaling in regulating insulin secretion and improve methods for preventing and treating diabetes.


Assuntos
Dopamina , Insulinas , Cálcio/metabolismo , Dopamina/farmacologia , Glucose/farmacologia , Secreção de Insulina , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
3.
Diabetes ; 69(11): 2377-2391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826296

RESUMO

Vesicular monoamine transporter 2 (VMAT2) uptakes cytoplasmic monoamines into vesicles for storage. VMAT2 plays a role in modulating insulin release by regulating dopamine levels in the pancreas, although the exact mechanism remains elusive. We found that VMAT2 expression in ß-cells specifically increases under high blood glucose conditions. The islets isolated from ß-cell-specific Vmat2 knockout (ßVmat2KO) mice show elevated insulin secretion levels in response to glucose stimulation. Under prolonged high-fat diet feedings, the ßVmat2KO mice exhibit impaired glucose and insulin tolerance and progressive ß-cell dysfunction. Here we demonstrate VMAT2 uptake of dopamine to protect dopamine from degradation by monoamine oxidase, thereby safeguarding ß-cells from excess reactive oxygen species (ROS) exposure. In the context of high demand for insulin secretion, the absence of VMAT2 leads to elevated ROS in ß-cells, which accelerates ß-cell dedifferentiation and ß-cell loss. Therefore, VMAT2 controls the amount of dopamine in ß-cells, thereby protecting pancreatic ß-cells from excessive oxidative stress.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Dopamina/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/induzido quimicamente , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Glicemia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Espécies Reativas de Oxigênio , Proteínas Vesiculares de Transporte de Monoamina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA