RESUMO
PML is a stress-responsive protein that coordinates assembly of phase-separated nuclear aggregates, known as PML nuclear bodies (PML-NBs), where a large number of protein interactors and chromatin processes are finely regulated. Tampering with the PML gene produces a variety of phenotypic consequences that include promoting or interfering with tumor progression but the molecular underpinnings of PML pleiotropy are still elusive. In this review, we explore the contribution of PML splicing isoforms to PML-NB assorted activities. We describe recent literature indicating that distinct PML isoforms drive formation of specialized PML-NBs and perform unique functions and we suggest that future research efforts should delve into the contribution of isoform specificity to help elucidate the complex functionality of the PML gene.
Assuntos
Núcleo Celular , Núcleo Celular/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.
Assuntos
Cromatina , Neoplasias de Mama Triplo Negativas , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular TumoralRESUMO
The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/patologia , Síndromes de Tricotiodistrofia/enzimologia , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Epoprostenol , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Pele/patologia , Transcrição Gênica , Síndromes de Tricotiodistrofia/genética , Raios Ultravioleta , Xeroderma Pigmentoso/genéticaRESUMO
Heterochromatin is a pivotal element in the functional organization of genomes. In our study, we delve into the heterochromatin pattern of association by the PML (promyelocytic leukemia) protein. By using PML chromatin immunoprecipitation and sequencing data and comparing computational methodologies to depict PML chromatin association, we describe PML-associated domains or PADs as large heterochromatic regions that exhibit similar genomic features across cancer cell lines. We show that PADs are specifically enriched in non-coding genes, duplicated gene clusters, and repetitive DNA elements. Moreover, we find enriched binding motifs of KZFPs, which are involved in orchestrating epigenetic repression at repetitive DNA elements. Hence, our findings suggest that PML conservatively associates to heterochromatic domains enriched in repetitive DNA elements and duplicated gene clusters in cancer. These findings contribute to a broader understanding of the complex regulatory framework of genome organization by heterochromatin in cancer.
RESUMO
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/metabolismo , Tretinoína/uso terapêutico , Regulação da Expressão Gênica , Diferenciação Celular , Leucemia Promielocítica Aguda/tratamento farmacológicoRESUMO
Adiponectin is an adipocyte-derived hormone, which circulates in the form of homo-multimers. The individual oligomers have a distinct profile of activity, playing crucial roles in several biological processes, including metabolism and inflammation. Adiponectin exerts many of its effects by interacting with the receptors, AdipoR1 and AdipoR2. In the present study, mRNA expression of adiponectin, AdipoR1 and AdipoR2 was evaluated by quantitative PCR in different areas of the mammary gland in healthy lactating cows. The adiponectin isoforms in milk and blood were investigated by Western blotting and 2D-electrophoresis, and the presence of adiponectin protein was determined by immunohistochemistry. Low level expression of adiponectin mRNA was found in all areas of bovine mammary gland tissues examined. AdipoR1 and AdipoR2 mRNAs were also detected in mammary tissues and their expression was particularly prominent in the parenchyma and cistern. Western blotting revealed a heterogeneous electrophoretic pattern, indicating that different adiponectin isoforms exist in milk, compared with blood. In particular, milk shows a low molecular weight isoform of adiponectin, corresponding to the globular domain. Adiponectin in milk is characterised by a more complex 2D electrophoretic pattern, compared with blood, as illustrated by the presence of proteins of different molecular weights and isoelectric points. Adiponectin protein was detected by immunohistochemistry in epithelial cells lining the secretory alveoli, in secretum within the alveolar lumen and in small peripheral nerves. The study findings support a role for adiponectin in regulating metabolism and immunity of the bovine mammary gland and potentially the calf intestine, following ingestion of milk.