Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Immunity ; 55(5): 847-861.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545033

RESUMO

The microbiota are vital for immune homeostasis and provide a competitive barrier to bacterial and fungal pathogens. Here, we investigated how gut commensals modulate systemic immunity and response to viral infection. Antibiotic suppression of the gut microbiota reduced systemic tonic type I interferon (IFN-I) and antiviral priming. The microbiota-driven tonic IFN-I-response was dependent on cGAS-STING but not on TLR signaling or direct host-bacteria interactions. Instead, membrane vesicles (MVs) from extracellular bacteria activated the cGAS-STING-IFN-I axis by delivering bacterial DNA into distal host cells. DNA-containing MVs from the gut microbiota were found in circulation and promoted the clearance of both DNA (herpes simplex virus type 1) and RNA (vesicular stomatitis virus) viruses in a cGAS-dependent manner. In summary, this study establishes an important role for the microbiota in peripheral cGAS-STING activation, which promotes host resistance to systemic viral infections. Moreover, it uncovers an underappreciated risk of antibiotic use during viral infections.


Assuntos
Microbioma Gastrointestinal , Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Antibacterianos , Antivirais , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Nucleotidiltransferases/genética
2.
Nature ; 609(7926): 335-340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853476

RESUMO

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Assuntos
Acinetobacter baumannii , Microscopia Crioeletrônica , Fímbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citologia , Acinetobacter baumannii/ultraestrutura , Elasticidade , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799450

RESUMO

The protein MakA was discovered as a motility-associated secreted toxin from Vibrio cholerae Here, we show that MakA is part of a gene cluster encoding four additional proteins: MakB, MakC, MakD, and MakE. MakA, MakB, and MakE were readily detected in culture supernatants of wild-type V. cholerae, whereas secretion was very much reduced from a flagellum-deficient mutant. Crystal structures of MakA, MakB, and MakE revealed a structural relationship to a superfamily of bacterial pore-forming toxins. Expression of MakA/B/E in Escherichia coli resulted in toxicity toward Caenorhabditis elegans used as a predatory model organism. None of these Mak proteins alone or in pairwise combinations were cytolytic, but an equimolar mixture of MakA, MakB, and MakE acted as a tripartite cytolytic toxin in vitro, causing lysis of erythrocytes and cytotoxicity on cultured human colon carcinoma cells. Formation of oligomeric complexes on liposomes was observed by electron microscopy. Oligomer interaction with membranes was initiated by MakA membrane binding followed by MakB and MakE joining the assembly of a pore structure. A predicted membrane insertion domain of MakA was shown by site-directed mutagenesis to be essential for toxicity toward C. elegans Bioinformatic analyses revealed that the makCDBAE gene cluster is present as a genomic island in the vast majority of sequenced genomes of V. cholerae and the fish pathogen Vibrio anguillarum We suggest that the hitherto-unrecognized cytolytic MakA/B/E toxin can contribute to Vibrionaceae fitness and virulence potential in different host environments and organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Flagelos/metabolismo , Vibrio cholerae/metabolismo , Animais , Células CACO-2 , Caenorhabditis elegans/metabolismo , Eritrócitos/metabolismo , Escherichia coli , Ilhas Genômicas , Humanos , Lipossomos/metabolismo , Família Multigênica , Vibrio cholerae/genética , Virulência
4.
J Cell Sci ; 134(5)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33106317

RESUMO

Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1ß (IL-1ß). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.


Assuntos
Proteínas Associadas aos Microtúbulos , Vibrio cholerae , Autofagia , Proteínas Relacionadas à Autofagia/genética , Citotoxinas , Vitamina B 12/análogos & derivados
5.
PLoS Pathog ; 17(3): e1009414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735319

RESUMO

Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.


Assuntos
Proteínas de Bactérias/metabolismo , Citotoxinas/metabolismo , Ácidos Fosfatídicos/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Cólera/metabolismo , Humanos , Camundongos , Internalização do Vírus
6.
Microb Cell Fact ; 21(1): 139, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831865

RESUMO

BACKGROUND: Functionally related genes in bacteria are often organized and transcribed as polycistronic transcriptional units. Examples are the fim operon, which codes for biogenesis of type 1 fimbriae in Escherichia coli, and the atp operon, which codes for the FoF1 ATP synthase. We tested the hypothesis that markerless polar mutations could be efficiently engineered using CRISPR/Cas12a in these loci. RESULTS: Cas12a-mediated engineering of a terminator sequence inside the fimA gene occurred with efficiencies between 10 and 80% and depended on the terminator's sequence, whilst other types of mutations, such as a 97 bp deletion, occurred with 100% efficiency. Polar mutations using a terminator sequence were also engineered in the atp locus, which induced its transcriptional shutdown and produced identical phenotypes as a deletion of the whole atp locus (ΔatpIBEFHAGDC). Measuring the expression levels in the fim and atp loci showed that many supposedly non-polar mutants induced a significant polar effect on downstream genes. Finally, we also showed that transcriptional shutdown or deletion of the atp locus induces elevated levels of intracellular ATP during the exponential growth phase. CONCLUSIONS: We conclude that Cas12a-mediated mutagenesis is an efficient simple system to generate polar mutants in E. coli. Different mutations were induced with varying degrees of efficiency, and we confirmed that all these mutations abolished the functions encoded in the fim and atp loci. We also conclude that it is difficult to predict which mutagenesis strategy will induce a polar effect in genes downstream of the mutation site. Furthermore the strategies described here can be used to manipulate the metabolism of E. coli as showcased by the increase in intracellular ATP in the markerless ΔatpIBEFHAGDC mutant.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Trifosfato de Adenosina , Escherichia coli/genética , Edição de Genes , Mutagênese , Óperon
7.
Int J Cancer ; 149(2): 442-459, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720402

RESUMO

Colorectal cancer is one of the leading causes of cancer-related death worldwide. The adenomatous polyposis coli (APC) gene is mutated in hereditary colorectal tumors and in more than 80% of sporadic colorectal tumors. APC mutations impair ß-catenin degradation, leading to its permanent stabilization and increased transcription of cancer-driving target genes. In colon cancer, impairment of ß-catenin degradation leads to its cytoplasmic accumulation, nuclear translocation, and subsequent activation of tumor cell proliferation. Suppressing ß-catenin signaling in cancer cells therefore appears to be a promising strategy for new anticancer strategies. Recently, we discovered a novel Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA), that affects both invertebrate and vertebrate hosts. It promotes bacterial survival and proliferation in invertebrate predators but has unknown biological role(s) in mammalian hosts. Here, we report that MakA can cause lethality of tumor cells via induction of apoptosis. Interestingly, MakA exhibited potent cytotoxic activity, in particular against several tested cancer cell lines, while appearing less toxic toward nontransformed cells. MakA bound to the tumor cell surface became internalized into the endolysosomal compartment and induced leakage of endolysosomal membranes, causing cytosolic release of cathepsins and activation of proapoptotic proteins. In addition, MakA altered ß-catenin integrity in colon cancer cells, partly through a caspase- and proteasome-dependent mechanism. Importantly, MakA inhibited ß-catenin-mediated tumor cell proliferation. Remarkably, intratumor injection of MakA significantly reduced tumor development in a colon cancer murine solid tumor model. These data identify MakA as a novel candidate to be considered in new strategies for development of therapeutic agents against colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Citotoxinas/administração & dosagem , Vibrio cholerae/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citotoxinas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Ann Clin Microbiol Antimicrob ; 19(1): 2, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941492

RESUMO

BACKGROUND: Acinetobacter baumannii is a Gram-negative opportunistic pathogen with a notorious reputation of being resistant to antimicrobial agents. The capability of A. baumannii to persist and disseminate between healthcare settings has raised a major concern worldwide. METHODS: Our study investigated the antibiotic resistance features and molecular epidemiology of 52 clinical isolates of A. baumannii collected in Pakistan between 2013 and 2015. Antimicrobial susceptibility patterns were determined by the agar disc diffusion method. Comparative sequence analyses of the ampC and blaOXA-51-like alleles were used to assign the isolates into clusters. The whole genomes of 25 representative isolates were sequenced using the MiSeq Desktop Sequencer. Free online applications were used to determine the phylogeny of genomic sequences, retrieve the multilocus sequence types (ST), and detect acquired antimicrobial resistance genes. RESULTS: Overall, the isolates were grouped into 7 clusters and 3 sporadic isolates. The largest cluster, Ab-Pak-cluster-1 (blaOXA-66 and ISAba1-ampC-19) included 24 isolates, belonged to ST2 and International clone (IC) II, and was distributed between two geographical far-off cities, Lahore and Peshawar. Ab-Pak-clusters-2 (blaOXA-66, ISAba1-ampC-2), and -3 (blaOXA-66, ISAba1-ampC-20) and the individual isolate Ab-Pak-Lah-01 (ISAba1-blaOXA-66, ISAba1-ampC-2) were also assigned to ST2 and IC II. On the other hand, Ab-Pak-clusters-4 (blaOXA-69, ampC-1), -5 (blaOXA-69, ISAba1-ampC-78), and -6A (blaOXA-371, ISAba1-ampC-3) belonged to ST1, while Ab-Pak-cluster-6B (blaOXA-371, ISAba1-ampC-8) belonged to ST1106, with both ST1 and ST1106 being members of IC I. Five isolates belonged to Ab-Pak-cluster-7 (blaOXA-65, ampC-43). This cluster corresponded to ST158, showed a well-delineated position on the genomic phylogenetic tree, and was equipped with several antimicrobial resistance genes including blaOXA-23 and blaGES-11. CONCLUSIONS: Our study detected the occurrence of 7 clusters of A. baumannii in Pakistan. Altogether, 6/7 of the clusters and 45/52 (86.5%) of the isolates belonged to IC I (n = 9) or II (n = 36), making Pakistan no exception to the global domination of these two clones. The onset of ST158 in Pakistan marked a geographical dispersal of this clone beyond the Middle East and brought up the need for a detailed characterization.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Farmacorresistência Bacteriana/genética , Epidemiologia Molecular , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecção Hospitalar , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Infecções Oportunistas , Paquistão/epidemiologia , Filogenia
9.
Genes Dev ; 24(13): 1345-50, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20595230

RESUMO

In Escherichia coli, the major nucleoid protein H-NS limits transcription by acting as a repressor or transcriptional silencer, presumably by its ability to close the looped chromosome domains in the nucleoid through DNA-protein-DNA bridging. Here, we demonstrate the direct involvement of H-NS as a positive factor stimulating translation of the malT mRNA. In vitro studies showed that H-NS facilitates a repositioning of the 30S preinitiation complex on the malT mRNA. H-NS stimulation of translation depended on the AU-rich -35 to -40 region of the mRNA. Several additional examples were found demonstrating a novel function for H-NS in translation of genes with suboptimal ribosome-binding sequences.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Ativação Transcricional , Sítios de Ligação , Ligação Proteica
10.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795330

RESUMO

As adhesion fimbriae are a major virulence factor for many pathogenic Gram-negative bacteria, they are also potential targets for antibodies. Fimbriae are commonly required for initiating the colonization that leads to disease, and their success as adhesion organelles lies in their ability to both initiate and sustain bacterial attachment to epithelial cells. The ability of fimbriae to unwind and rewind their helical filaments presumably reduces their detachment from tissue surfaces with the shear forces that accompany significant fluid flow. Therefore, the disruption of functional fimbriae by inhibiting this resilience should have high potential for use as a vaccine to prevent disease. In this study, we show that two characteristic biomechanical features of fimbrial resilience, namely, the extension force and the extension length, are significantly altered by the binding of antibodies to fimbriae. The fimbriae that were studied are normally expressed on enterotoxigenic Escherichia coli, which are a major cause of diarrheal disease. This alteration in biomechanical properties was observed with bivalent polyclonal antifimbrial antibodies that recognize major pilin subunits but not with the Fab fragments of these antibodies. Thus, we propose that the mechanism by which bound antibodies disrupt the uncoiling of natural fimbria under force is by clamping together layers of the helical filament, thereby increasing their stiffness and reducing their resilience during fluid flow. In addition, we propose that antibodies tangle fimbriae via bivalent binding, i.e., by binding to two individual fimbriae and linking them together. Use of antibodies to disrupt physical properties of fimbriae may be generally applicable to the large number of Gram-negative bacteria that rely on these surface-adhesion molecules as an essential virulence factor. IMPORTANCE: Our study shows that the resiliency of colonization factor antigen I (CFA/I) and coli surface antigen 2 (CS2) fimbriae, which are current targets for vaccine development, can be compromised significantly in the presence of antifimbrial antibodies. It is unclear how the humoral immune system specifically interrupts infection after the attachment of enterotoxigenic Escherichia coli (ETEC) to the epithelial surface. Our study indicates that immunoglobulins, in addition to their well-documented role in adaptive immunity, can mechanically damage the resilience of fimbriae of surface-attached ETEC, thereby revealing a new mode of action. Our data suggest a mechanism whereby antibodies coat adherent and free-floating bacteria to impede fimbrial resilience. Further elucidation of this possible mechanism is likely to inform the development and refinement of preventive vaccines against ETEC diarrhea.


Assuntos
Anticorpos Antibacterianos/fisiologia , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana/fisiologia , Fenômenos Biomecânicos , Escherichia coli/citologia , Proteínas de Fímbrias/genética , Microscopia de Força Atômica
11.
PLoS Pathog ; 11(8): e1005109, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291711

RESUMO

Uropathogenic Escherichia coli (UPEC) are capable of occupying physiologically distinct intracellular and extracellular niches within the urinary tract. This feat requires the timely regulation of gene expression and small RNAs (sRNAs) are known to mediate such rapid adjustments in response to changing environmental cues. This study aimed to uncover sRNA-mediated gene regulation in the UPEC strain UTI89, during infection of bladder epithelial cells. Hfq is an RNA chaperone known to facilitate and stabilize sRNA and target mRNA interactions with bacterial cells. The co-immunoprecipitation and high throughput RNA sequencing of Hfq bound sRNAs performed in this study, revealed distinct sRNA profiles in UPEC in the extracellular and intracellular environments. Our findings emphasize the importance of studying regulatory sRNAs in a biologically relevant niche. This strategy also led to the discovery of a novel virulence-associated trans-acting sRNA-PapR. Deletion of papR was found to enhance adhesion of UTI89 to both bladder and kidney cell lines in a manner independent of type-1 fimbriae. We demonstrate PapR mediated posttranscriptional repression of the P-fimbriae phase regulator gene papI and postulate a role for such regulation in fimbrial cross-talk at the population level in UPEC. Our results further implicate the Leucine responsive protein (LRP) as a transcriptional activator regulating PapR expression. Our study reports, for the first time, a role for sRNAs in regulation of P-fimbriae phase variation and emphasizes the importance of studying pathogenesis-specific sRNAs within a relevant biological niche.


Assuntos
Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Linhagem Celular , Fímbrias Bacterianas/metabolismo , Citometria de Fluxo , Genes Bacterianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Dados de Sequência Molecular , RNA Interferente Pequeno , Escherichia coli Uropatogênica/genética , Virulência/genética
12.
Mol Microbiol ; 95(1): 116-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355550

RESUMO

Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway. Here, we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared with colonization factor antigen I (CFA/I) fimbriae, which are two ETEC fimbriae assembled via different pathways, and with P-fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P-fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology.


Assuntos
Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/genética , Fímbrias Bacterianas/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
13.
Antimicrob Agents Chemother ; 60(3): 1801-18, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26824943

RESUMO

Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to blaOXA-23 (20 isolates), blaOXA-24/40-like (6 isolates), blaOXA-467 (1 isolate), and ISAba1-blaOXA-69 (1 isolate). Ceftazidime resistance was associated with blaPER-7 in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, ΔTn6279, Ab-ST3-aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite transposons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Aminoglicosídeos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Humanos , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , beta-Lactamases/genética
14.
PLoS Pathog ; 9(10): e1003620, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098113

RESUMO

Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Proteínas da Matriz Extracelular/metabolismo , Porinas/metabolismo , Vibrio cholerae/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Proteínas da Matriz Extracelular/genética , Porinas/genética , Vibrio cholerae/genética , Catelicidinas
15.
BMC Microbiol ; 14: 216, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25178918

RESUMO

BACKGROUND: Analysis of the Escherichia coli collection of reference strains (ECOR) for the presence of the gene locus clyA, which encodes the pore-forming protein ClyA (cytolysin A), revealed that a non-functional clyA locus is common among certain extraintestinal pathogenic E. coli (ExPEC). In fact, all 15 ECOR group B2 strains and several additionally examined extraintestinal pathogenic (uropathogenic (UPEC) and neonatal meningitis (NBM)) E. coli strains contained various ΔclyA alleles. RESULTS: There are at least four different variants of ΔclyA, suggesting that such deletions in clyA have arisen at more than one occasion. On the basis of this occurrence of the truncated clyA genes, we considered that there may be a patho-adaptive selection for deletions in clyA in extraintestinal pathogenic E. coli. In E. coli K-12 the clyA gene has been viewed as "cryptic" since it is tightly silenced by the nucleoid structuring protein H-NS. We constructed a restored clyA+ locus in derivatives of the UPEC strain 536 for further investigation of this hypothesis and, in particular, how the gene would be expressed. Our results show that the level of clyA+ expression is highly increased in the UPEC derivatives in comparison with the non-pathogenic E. coli K-12. Transcription of the clyA+ gene was induced to even higher levels when the SfaX regulatory protein was overproduced. The derivative with a restored clyA+ locus displayed a somewhat slower growth than the parental UPEC strain 536 when a sub-inhibitory concentration of the antimicrobial peptide Polymyxin B was added to the growth medium. CONCLUSIONS: Taken together, our findings show that the clyA+ locus is expressed at an elevated level in the UPEC strain and we conclude that this is at least in part due to the effect of the SfaX/PapX transcriptional regulators.


Assuntos
Adaptação Biológica , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Expressão Gênica , Proteínas Hemolisinas/biossíntese , Proteínas Hemolisinas/genética , Mutação , Escherichia coli Uropatogênica/genética , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Recombinação Genética , Deleção de Sequência , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Escherichia coli Uropatogênica/crescimento & desenvolvimento
16.
Microbiol Spectr ; 12(2): e0295623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38205963

RESUMO

Carbapenem-resistant Acinetobacter baumannii causes one of the most difficult-to-treat nosocomial infections. Polycationic drugs like polymyxin B or colistin and tetracycline drugs such as doxycycline or minocycline are commonly used to treat infections caused by carbapenem-resistant A. baumannii. Here, we show that a subpopulation of cells associated with the opaque/translucent colony phase variation by A. baumannii AB5075 displays differential tolerance to subinhibitory concentrations of colistin and tetracycline. Using a variety of microscopic techniques, we demonstrate that extracellular polysaccharide moieties mediate colistin tolerance to opaque A. baumannii at single-cell level and that mushroom-shaped biofilm structures protect opaque bacteria at the community level. The colony switch phenotype is found to alter several traits of A. baumannii, including long-term survival under desiccation, tolerance to ethanol, competition with Escherichia coli, and intracellular survival in the environmental model host Acanthamoeba castellanii. Additionally, our findings suggest that extracellular DNA associated with membrane vesicles can promote colony switching in a DNA recombinase-dependent manner.IMPORTANCEAs a WHO top-priority drug-resistant microbe, Acinetobacter baumannii significantly contributes to hospital-associated infections worldwide. One particularly intriguing aspect is its ability to reversibly switch its colony morphotype on agar plates, which has been remarkably underexplored. In this study, we employed various microscopic techniques and phenotypic assays to investigate the colony phase variation switch under different clinically and environmentally relevant conditions. Our findings reveal that the presence of a poly N-acetylglucosamine-positive extracellular matrix layer contributes to the protection of bacteria from the bactericidal effects of colistin. Furthermore, we provide intriguing insights into the multicellular lifestyle of A. baumannii, specifically in the context of colony switch variation within its predatory host, Acanthamoeba castellanii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Acinetobacter baumannii/genética , Variação de Fase , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Carbapenêmicos/farmacologia , Biofilmes , DNA , Farmacorresistência Bacteriana Múltipla/genética
17.
Infect Genet Evol ; 112: 105444, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37210019

RESUMO

Since the late 1930s, resistance to sulfonamides has been accumulating across bacterial species including Acinetobacter baumannii, an opportunistic pathogen increasingly implicated the spread of antimicrobial resistance worldwide. Our study aimed to explore events involved in the acquisition of sulfonamide resistance genes, particularly sul2, among the earliest available isolates of A. baumannii. The study utilized the genomic data of 19 strains of A. baumannii isolated before 1985. The whole genomes of 5 clinical isolates obtained from the Culture Collection University of Göteborg (CCUG), Sweden, were sequenced using the Illumina MiSeq system. Acquired resistance genes, insertion sequence elements and plasmids were detected using ResFinder, ISfinder and Plasmidseeker, respectively, while sequence types (STs) were assigned using the PubMLST Pasteur scheme. BLASTn was used to verify the occurrence of sul genes and to map their genetic surroundings. The sul1 and sul2 genes were detected in 4 and 9 isolates, respectively. Interestingly, sul2 appeared thirty years earlier than sul1. The sul2 gene was first located in the genomic island GIsul2 located on a plasmid, hereafter called NCTC7364p. With the emergence of international clone 1, the genetic context of sul2 evolved toward transposon Tn6172, which was also plasmid-mediated. Sulfonamide resistance in A. baumannii was efficiently acquired and transferred vertically, e.g., among the ST52 and ST1 isolates, as well as horizontally among non-related strains by means of a few efficient transposons and plasmids. Timely acquisition of the sul genes has probably contributed to the survival skill of A. baumannii under the high antimicrobial stress of hospital settings.


Assuntos
Acinetobacter baumannii , Antibacterianos/farmacologia , Plasmídeos/genética , Elementos de DNA Transponíveis , Sulfanilamida , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
18.
NPJ Biofilms Microbiomes ; 9(1): 101, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097635

RESUMO

Acinetobacter baumannii has emerged as one of the most common extensive drug-resistant nosocomial bacterial pathogens. Not only can the bacteria survive in hospital settings for long periods, but they are also able to resist adverse conditions. However, underlying regulatory mechanisms that allow A. baumannii to cope with these conditions and mediate its virulence are poorly understood. Here, we show that bi-stable expression of the Csu pili, along with the production of poly-N-acetyl glucosamine, regulates the formation of Mountain-like biofilm-patches on glass surfaces to protect bacteria from the bactericidal effect of colistin. Csu pilus assembly is found to be an essential component of mature biofilms formed on glass surfaces and of pellicles. By using several microscopic techniques, we show that clinical isolates of A. baumannii carrying abundant Csu pili mediate adherence to epithelial cells. In addition, Csu pili suppressed surface-associated motility but enhanced colonization of bacteria into the lungs, spleen, and liver in a mouse model of systemic infection. The screening of c-di-GMP metabolizing protein mutants of A. baumannii 17978 for the capability to adhere to epithelial cells led us to identify GGDEF/EAL protein AIS_2337, here denoted PdeB, as a major regulator of Csu pili-mediated virulence and biofilm formation. Moreover, PdeB was found to be involved in the type IV pili-regulated robustness of surface-associated motility. Our findings suggest that the Csu pilus is not only a functional component of mature A. baumannii biofilms but also a major virulence factor promoting the initiation of disease progression by mediating bacterial adherence to epithelial cells.


Assuntos
Acinetobacter baumannii , Animais , Camundongos , Virulência , Acinetobacter baumannii/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Fímbrias Bacterianas
19.
FEMS Microbes ; 4: xtad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333444

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.

20.
J Biol Chem ; 286(14): 12389-96, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21330374

RESUMO

Gram-negative bacteria can alter the composition of the lipopolysaccharide (LPS) layer of the outer membrane as a response to different growth conditions and external stimuli. These alterations can, for example, promote attachment to surfaces and biofilm formation. The changes occur in the outermost layer of the cell and may consequently influence interactions between bacterial cells and surrounding host tissue, as well as other surfaces. Microscopic analyses, fractionation of bacterial cells, or other traditional microbiological assays have previously been used to study these alterations. These methods can, however, be time consuming and do not always give detailed chemical information about the bacterial cell surface. We here present an analytical method that provides chemical information on the outermost portion of bacterial cells with respect to protein, peptidoglycan, lipid, and polysaccharide content. The method involves cryo-x-ray photoelectron spectroscopy analyses of the outermost portion (within ∼10 nm of the surface) of intact bacterial cells followed by a multivariate curve resolution analysis of carbon spectra. It can be used as a tool for characterizing and monitoring variations in the chemical composition of bacterial cell walls or of isolated outer membrane vesicles, variations that result from e.g. mutations or external stimuli. The method enabled us to predict accurately the alterations in polysaccharide content and surface chemistries of a set of well characterized Escherichia coli LPS mutants. The described approach may moreover be applied to monitor surface chemical composition of other biological samples.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Análise Multivariada , Espectroscopia Fotoeletrônica/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA