Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Physiol ; 12(1): coae036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873635

RESUMO

Thermal stress can influence the recovery of fish released after capture. Vitality assessments using reflex and behavioural responses require that responses can be observed reliably, independent of temperature. Here, we tested whether reflex and behavioural impairment and survival of beam-trawled and discarded European plaice (Pleuronectes platessa) are independent from seasonal air and water temperature deviations. In total, 324 beam-trawled plaice (n = 196 in summer and n = 128 in winter) were exposed to two air temperature treatments and two water treatments (i.e. modified and ambient temperatures for both). The modified treatments (i.e. cooled in summer, warmed in winter) represent the thermal shock a fish may experience when being returned to the water. All reflexes and tested behaviours were affected by ambient temperature, with high impairment noted in summer. None of the reflexes were affected by temperature shocks alone, only body flex was. Body flex was highly impaired under every exposure combination. Fish size and duration of air exposure further influenced impairment of reflexes such as head complex and tail grab. More generally, post-release survival was assessed as 21% [95% CI: 16-28%] in summer and 99% [97-100%] in winter. Beam trawling in summer is likely to induce high reflex impairment and mortality in discarded plaice, and therefore spatial-temporal mitigation approaches should be prioritized over control of on-board temperatures.

2.
PLoS One ; 15(2): e0229456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101577

RESUMO

Using measures of reflex impairment and injury to quantify an aquatic organism's vitality have gained popularity as survival predictors of discarded non-target fisheries catch. To evaluate the robustness of this method with respect to 'rater' subjectivity, we tested inter- and intra-rater repeatability and the role of 'expectation bias'. From video clips, multiple raters determined impairment levels of four reflexes of beam-trawled common sole (Solea solea) intended for discard. Raters had a range of technical experience, including veterinary students, practicing veterinarians, and fisheries scientists. Expectation bias was evaluated by first assessing a rater's assumption about the effect of air exposure on vitality, then comparing their reflex ratings of the same fish, once when the true air exposure duration was indicated and once when the time was exaggerated (by either 15 or 30 min). Inter-rater repeatability was assessed by having multiple raters evaluate those clips with true air exposure information; and intra- and inter-rater repeatability was determined by having individual raters evaluate a series of duplicated clips, all with true air exposure. Results indicate that inter- and intra-rater repeatability were high (intra-class correlation coefficients of 74% for both), and were not significantly affected by background type nor expectation bias related to assumed impact from prolonged air exposure. This suggests that reflex impairment as a metric for predicting fish survival is robust to involving multiple raters with diverse backgrounds. Bias is potentially more likely to be introduced through subjective reflexes than raters, given that consistency in scoring differed for some reflexes based on rater experience type. This study highlights the need to provide ample training for raters, and that no prior experience is needed to become a reliable rater. Moreover, before implementing reflexes in a vitality study, it is important to evaluate whether the determination of presence/absence is subjective.


Assuntos
Comportamento Animal , Linguados/crescimento & desenvolvimento , Transtornos dos Movimentos/veterinária , Variações Dependentes do Observador , Reflexo/fisiologia , Gravação em Vídeo , Animais , Feminino , Linguados/fisiologia , Humanos , Masculino , Transtornos dos Movimentos/diagnóstico , Reprodutibilidade dos Testes , Inquéritos e Questionários
3.
PLoS One ; 12(7): e0179092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704390

RESUMO

Scoring reflex responsiveness and injury of aquatic organisms has gained popularity as predictors of discard survival. Given this method relies upon the individual interpretation of scoring criteria, an evaluation of its robustness is done here to test whether protocol-instructed, multiple raters with diverse backgrounds (research scientist, technician, and student) are able to produce similar or the same reflex and injury score for one of the same flatfish (European plaice, Pleuronectes platessa) after experiencing commercial fishing stressors. Inter-rater reliability for three raters was assessed by using a 3-point categorical scale ('absent', 'weak', 'strong') and a tagged visual analogue continuous scale (tVAS, a 10 cm bar split in three labelled sections: 0 for 'absent', 'weak', 'moderate', and 'strong') for six reflex responses, and a 4-point scale for four injury types. Plaice (n = 304) were sampled from 17 research beam-trawl deployments during four trips. Fleiss kappa (categorical scores) and intra-class correlation coefficients (ICC, continuous scores) indicated variable inter-rater agreement by reflex type (ranging between 0.55 and 0.88, and 67% and 91% for Fleiss kappa and ICC, respectively), with least agreement among raters on extent of injury (Fleiss kappa between 0.08 and 0.27). Despite differences among raters, which did not significantly influence the relationship between impairment and predicted survival, combining categorical reflex and injury scores always produced a close relationship of such vitality indices and observed delayed mortality. The use of the continuous scale did not improve fit of these models compared with using the reflex impairment index based on categorical scores. Given these findings, we recommend using a 3-point categorical over a continuous scale. We also determined that training rather than experience of raters minimised inter-rater differences. Our results suggest that cost-efficient reflex impairment and injury scoring may be considered a robust technique to evaluate lethal stress and damage of this flatfish species on-board commercial beam-trawl vessels.


Assuntos
Peixes/fisiologia , Animais , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes
4.
PLoS One ; 10(6): e0131109, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098900

RESUMO

Modified handling is often claimed to reduce (sub-)lethal impacts among organisms caught-and-released in fisheries. Improving welfare of discarded fish warrants investigation, when their survival is of both economic and ecological importance. In this study, juvenile yellowfin bream (Acanthopagrus australis) were trawled in an Australian penaeid fishery and then discarded after on-board sorting in either dry or water-filled (modified) trays and with delays in starting sorting of either 2 or 15 mins. Blood plasma cortisol, glucose and potassium were sampled immediately from some yellowfin bream, while others were placed into cages (with controls) and sampled after five days. Irrespective of their on-board handling, all trawled fish incurred a relatively high acute stress response (i.e. an increase in Mean ± SE cortisol from a baseline of <4 to 122.0 ± 14.9 ng/mL) that was mostly attributed to the trawling process, and exacerbated by variation in key parameters (low salinity, changes in water temperature and the presence of jellyfish Catostylus mosaicus in catches). When C. mosaicus was present, the potassium concentrations of fish sampled immediately after sorting were significantly elevated, possibly due to nematocyst contact and subsequent inhibition of ion pumps or cytolysis. Stress also increased during handling in response to warmer air temperatures and longer exposure. While most fish had substantially recovered by 120 hours after discarding, deploying selective trawls (to reduce jellyfish) for short periods and then quickly sorting catches in water would benefit discard welfare.


Assuntos
Bem-Estar do Animal , Pesqueiros , Perciformes/fisiologia , Estresse Fisiológico , Animais , Austrália , Glicemia/metabolismo , Hidrocortisona/sangue , Perciformes/sangue , Perciformes/parasitologia , Potássio/sangue , Salinidade , Cifozoários/patogenicidade , Água do Mar/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA