Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur Radiol ; 29(6): 2812-2820, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30456586

RESUMO

OBJECTIVES: To assess the risks for implant users with copper-containing intrauterine devices (IUDs) during MR and CT examinations. METHODS: A tissue-mimicking phantom suitable for all experiments within this study was developed. Seven different types of copper IUDs were evaluated. Heating and dislocation of each IUD were investigated at two clinically relevant positions in 1.5 T and 3 T MR scanners. Artifacts in the field of view caused by each tested IUD were determined for clinical MR and CT imaging. RESULTS: No significant heating of any tested IUD was detected during MR measurements. The temperature increase was less than 0.6 K for all IUDs. Neither angular deflection nor translation of any IUD was detected. Artifacts in MR images were limited to the very vicinity of the IUDs except for one IUD containing a steel-visualizing element. Streaking artifacts in CT were severe (up to 75.5%) in the slices including the IUD. CONCLUSION: No significant risk possibly harming the patient was determined during this phantom study, deeming MR examinations safe for women with an implanted copper IUD. Image quality was more impaired for CT than for MR imaging and needs careful consideration during diagnosis. KEY POINTS: • Risk assessment of copper-containing IUDs with regard to heating, dislocation, and artifacts during MR and CT imaging. • Neither significant heating nor dislocation was determined in MR; image quality was more impaired for CT than for MR imaging and needs careful consideration during diagnosis. • The tested IUDs pose no additional risks for implant users during MR and CT examinations.


Assuntos
Artefatos , Anticoncepcionais/efeitos adversos , Dispositivos Intrauterinos de Cobre/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Medição de Risco , Tomografia Computadorizada por Raios X/métodos , Adulto , Feminino , Humanos , Segurança do Paciente
2.
Magn Reson Imaging ; 75: 116-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987123

RESUMO

Development of a deterministic algorithm for automated detection of the Arterial Input Function (AIF) in DCE-MRI of colorectal cancer. Using a filter pipeline to determine the AIF region of interest. Comparison to algorithms from literature with mean squared error and quantitative perfusion parameter Ktrans. The AIF found by our algorithm has a lower mean squared error (0.0022 ±â€¯0.0021) in reference to the manual annotation than comparable algorithms. The error of Ktrans (21.52 ±â€¯17.2%) is lower than that of other algorithms. Our algorithm generates reproducible results and thus supports a robust and comparable perfusion analysis.


Assuntos
Algoritmos , Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Circulação Sanguínea , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/fisiopatologia , Imageamento por Ressonância Magnética , Automação , Meios de Contraste , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
3.
Phys Med Biol ; 65(9): 095001, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32160594

RESUMO

Measurement of the blood T 1 time using conventional myocardial T 1 mapping methods has gained clinical significance in the context of extracellular volume (ECV) mapping and synthetic hematocrit (Hct). However, its accuracy is potentially compromised by in-flow of non-inverted/non-saturated spins and in-flow of spins which are not partially saturated from previous imaging pulses. Bloch simulations were used to analyze various flow effects separately. T 1 measurements of gadolinium doped water were performed using a flow phantom with adjustable flow velocities at 3 T. Additionally, in vivo blood T 1 measurements were performed in 6 healthy subjects (26 ± 5 years, 2 female). To study the T 1 time as a function of the instantaneous flow velocity, T 1 times were evaluated in an axial imaging slice of the descending aorta. Velocity encoded cine measurements were performed to quantify the flow velocity throughout the cardiac cycle. Simulation results show more than 30% loss in accuracy for 10% non-prepared in-flowing spins. However, in- and out-flow to the imaging plane only demonstrated minor impact on the T 1 time. Phantom T 1 times were decreased by up to 200 ms in the flow phantom, due to in-flow of non-prepared spins. High flow velocities cause in-flow of spins that lack partial saturation from the imaging pulses but only lead to negligible T 1 time deviation (less than 30 ms). In vivo measurements confirm a substantial variation of the T 1 time depending on the flow velocity. The highest aortic T 1 times are observed at the time point of minimal flow with increased flow velocity leading to reduction of the measured T 1 time by up to [Formula: see text] at peak velocity. In this work we attempt to dissect the effects of flow on T 1 times, by using simulations, well-controlled, simplified phantom setup and the linear flow pattern in the descending aorta in vivo.


Assuntos
Velocidade do Fluxo Sanguíneo , Gadolínio/análise , Coração/fisiologia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino
4.
Invest Radiol ; 53(9): 555-562, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29863602

RESUMO

OBJECTIVES: Sodium magnetic resonance (MR) imaging provides noninvasive insights to cellular processes by measuring tissue sodium concentration (TSC). Many clinical studies combine sodium MR imaging with clinical standard MR procedures, in which contrast media is frequently administered. This work investigates the influence of gadolinium-based contrast agents on quantification of TSC. Thus, either scan pauses between early and late contrast-enhanced acquisitions can be used efficiently or sodium imaging can be performed as the final scan after dynamic contrast-enhanced acquisition. MATERIALS AND METHODS: For this study, 2 gadolinium-based contrast agents, Dotarem and Gadovist, were diluted with saline solution covering contrast agent concentrations in a clinical range. In addition, agarose-based sample series were created to simulate tissue relaxation time behavior. In vivo, the influence of Dotarem on sodium acquisition and TSC quantification was investigated in 1 ischemic stroke patient. RESULTS: Proton relaxation times decreased for increasing contrast agent concentrations as hyperbolic functions. Sodium relaxation times displayed a negative slope in regression analysis in most cases. The largest influence (-1.52 milliseconds per mmol/L contrast agent) was measured for sodium T1. Worst case calculations in ultrashort echo time sequence signal analysis showed a signal drop of (1.21% ± 0.56%) on tissue sodium quantification. In vivo sodium brain acquisitions of a stroke patient before and after Dotarem injection resulted in statistically nonsignificant differences in TSC quantification of relevant tissues and stroke areas (P > 0.05). CONCLUSIONS: Our study showed a quantitative influence of Dotarem and Gadovist on sodium relaxation times. However, quantification of TSC was not impaired, which was proven by worst case calculations and nonsignificant differences in vivo in an ischemic stroke patient. We suggest performing sodium imaging in useful clinical positions in protocols regardless of included Dotarem or Gadovist administrations. Being flexible in the study protocol design will strengthen ongoing sodium imaging investigations for various pathologies.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Meglumina/farmacologia , Compostos Organometálicos/farmacologia , Sódio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA