Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(20): 206402, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886474

RESUMO

We present a systematic study of vertex corrections in a homogeneous electron gas at metallic densities. The vertex diagrams are built using a recently proposed positive-definite diagrammatic expansion for the spectral function. The vertex function not only provides corrections to the well known plasmon and particle-hole scatterings, but also gives rise to new physical processes such as the generation of two plasmon excitations or the decay of the one-particle state into a two-particle-one-hole state. By an efficient Monte Carlo momentum integration we are able to show that the additional scattering channels are responsible for a reduction of the bandwidth, the appearance of a secondary plasmon satellite below the Fermi level, and a substantial redistribution of spectral weights. The feasibility of the approach for first-principles band-structure calculations is also discussed.

2.
J Chem Phys ; 140(18): 18A526, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832334

RESUMO

We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA