Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301084

RESUMO

The performance of high-rate supercapacitors requires fine morphological and electrical properties of the electrode. Polyaniline (PANI), as one of the most promising materials for energy storage, shows different behaviour on different substrates. The present study reports on the surface modification of fluorine doped tin oxide (FTO) with the sodium phytate doped PANI without any binder and its utilization as a novel current collector in symmetric supercapacitor devices. The electrochemical behaviour of the sodium phytate doped PANI thin film with and without a binder on fluorine doped tin oxide (FTO) as current collector was investigated by cyclic voltammetry (CV). The electrode without a binder showed higher electrocatalytic efficiency. A symmetrical cell configuration was therefore constructed with the binder-free electrodes. The device showed excellent electrochemical performance with high specific capacities of 550 Fg-1 at 1 Ag-1 and 355 Fg-1 at 40 Ag-1 calculated from galvanostatic discharge curves. The low charge transfer and solution resistances (RCT and RS) of 7.86 Ωcm² and 3.58 × 10-1 Ωcm², respectively, and superior rate capability of 66.9% over a wide current density range of 1 Ag-1 to 40 Ag-1 and excellent cycling stability with 90% of the original capacity over 1000 charge/discharge cycles at 40 Ag-1, indicated it to be an efficient energy storage device. Moreover, the gravimetric energy and power density of the supercapacitor was remarkably high, providing 73.8 Whkg-1 at 500 Wkg-1, respectively. The gravimetric energy density remained stable as the power density increased. It even reached up to 49.4 Whkg-1 at a power density of up to 20 Wkg-1.

2.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266121

RESUMO

Electroconductive polymeric patches are being developed in the hope to interface with the electroresponsive tissues. For these constructs, conjugated polymers are considered as conductive components for their electroactive nature. Conversely, the clinical applications of these conductive polymeric patches are limited due to their short operational time-a decrease in their electroactivity occurs with the passage of time. This paper reports on the polymerization of aniline on prefabricated chitosan films on microscopic glass slides in the presence of sodium phytate. The strong chelation among sodium phytate, aniline and chitosan led to the formation of electoconductive polymeric patch. We assume that immobilization of sodium phytate in the polymeric patch helps to prevent electric deterioration, extend its electronic stability and reduce sheet resistance. The patch oxidized after three weeks (21 days) of incubation in phosphate buffer (pH 7.4 as physiological medium). This feasible fabrication technique set the foundation to design electronically stable, conjugated polymer-based patches, by providing a robust system of conduction that could be used with electroactive tissues such as cardiac muscles at the interface.

3.
Polymers (Basel) ; 12(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992462

RESUMO

The major drawbacks of the conventional methods for preparing polyaniline (PANI) are the large consumptions of toxic chemicals and long process durations. This paper presents a remarkably simple and green route for the chemical oxidative synthesis of PANI nanofibers, utilizing sodium phytate as a novel and environmentally friendly plant derived dopant. The process shows a remarkable reduction in the synthesis time and usage of toxic chemicals with good dispersibility and exceedingly high conductivity up to 10 S cm-1 of the resulting PANI at the same time. A detailed characterization of the PANI samples has been made showing excellent relationships between their structure and properties. Particularly, the electrochemical properties of the synthesized PANI as electrode material for supercapacitors were analyzed. The PANI sample, synthesized at pre-optimized conditions, exhibited impressive supercapacitor performance having a high specific capacitance (Csp) (832.5 Fg-1 and 528 Fg-1 at 1 Ag-1 and 40 Ag-1, respectively) as calculated from galvanostatic charge/discharge (GCD) curves. A good rate capability with a capacitance retention of 67.6% of its initial value was observed. The quite low solution resistance (Rs) value of 281.0 × 10-3 Ohm and charge transfer resistance value (Rct) of 7.44 Ohm represents the excellence of the material. Further, a retention of 95.3% in coulombic efficiency after 1000 charge discharge cycles, without showing any significant degradation of the material, was also exhibited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA