Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Neuroimage ; 285: 120484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061688

RESUMO

Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.


Assuntos
Córtex Cerebral , Roedores , Ratos , Camundongos , Animais , Córtex Cerebral/fisiologia , Silício , Tálamo/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Eletroencefalografia
2.
J Physiol ; 601(15): 3351-3376, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36511176

RESUMO

Although electrophysiologists have been recording intracellular neural activity routinely ever since the ground-breaking work of Hodgkin and Huxley, and extracellular multichannel electrodes have also been used frequently and extensively, a practical experimental method to track changes in membrane potential along a complete single neuron is still lacking. Instead of obtaining multiple intracellular measurements on the same neuron, we propose an alternative method by combining single-channel somatic patch-clamp and multichannel extracellular potential recordings. In this work, we show that it is possible to reconstruct the complete spatiotemporal distribution of the membrane potential of a single neuron with the spatial resolution of an extracellular probe during action potential generation. Moreover, the reconstruction of the membrane potential allows us to distinguish between the two major but previously hidden components of the current source density (CSD) distribution: the resistive and the capacitive currents. This distinction provides a clue to the clear interpretation of the CSD analysis, because the resistive component corresponds to transmembrane ionic currents (all the synaptic, voltage-sensitive and passive currents), whereas capacitive currents are considered to be the main contributors of counter-currents. We validate our model-based reconstruction approach on simulations and demonstrate its application to experimental data obtained in vitro via paired extracellular and intracellular recordings from a single pyramidal cell of the rat hippocampus. In perspective, the estimation of the spatial distribution of resistive membrane currents makes it possible to distiguish between active and passive sinks and sources of the CSD map and the localization of the synaptic input currents, which make the neuron fire. KEY POINTS: A new computational method is introduced to calculate the unbiased current source density distribution on a single neuron with known morphology. The relationship between extracellular and intracellular electric potential is determined via mathematical formalism, and a new reconstruction method is applied to reveal the full spatiotemporal distribution of the membrane potential and the resistive and capacitive current components. The new reconstruction method was validated on simulations. Simultaneous and colocalized whole-cell patch-clamp and multichannel silicon probe recordings were performed from the same pyramidal neuron in the rat hippocampal CA1 region, in vitro. The method was applied in experimental measurements and returned precise and distinctive characteristics of various intracellular phenomena, such as action potential generation, signal back-propagation and the initial dendritic depolarization preceding the somatic action potential.


Assuntos
Neurônios , Células Piramidais , Ratos , Animais , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Hipocampo/fisiologia
3.
J Youth Adolesc ; 52(9): 1856-1872, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270465

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder. Data on the role of transdiagnostic, intermediate phenotypes in ADHD-relevant characteristics and outcomes are needed to advance conceptual understanding and approaches to precision psychiatry. Specifically, the extent to which the association between neural response to reward and ADHD-associated affective, externalizing, internalizing, and substance use problems differ depending on ADHD status is unknown. Aims were to examine, in 129 adolescents, whether concurrent and prospective associations of fMRI-measured initial response to reward attainment (relative to loss) with affectivity and externalizing, internalizing, and alcohol use problems differs between youth at-risk for (i.e., subclinical) (n = 50) and not at-risk for ADHD. Adolescents were, on average, 15.29 years old (SD = 1.00; 38% female), 50 were at-risk for (Mage = 15.18 years, SD = 1.04; 22% female) and 79 not at-risk for (Mage = 15.37 years, SD = 0.98; 48.1% female) ADHD. Both concurrent and prospective relations differed given ADHD risk: across analyses, in at-risk youth, greater superior frontal gyrus response was associated with lower concurrent depressive problems but in not at-risk youth, these characteristics were not related. Controlling for baseline use, in at-risk youth, greater putamen response was associated with greater 18-month hazardous alcohol use, whereas in not at-risk youth, greater putamen response was associated with lower use. Where in brain and for which outcomes modulate (direction of) observed relations: superior frontal gyrus response is relevant for depressive problems whereas putamen response is relevant for alcohol problems and greater neural responsivity is linked to less depressive but to more alcohol problems in adolescents at-risk for ADHD and less alcohol problems in adolescents not at-risk. Differences in neural response to reward differentially confer vulnerability for adolescent depressive and alcohol problems depending on ADHD risk.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Transtorno do Deficit de Atenção com Hiperatividade , Transtornos Relacionados ao Uso de Substâncias , Humanos , Feminino , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Recompensa
4.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749727

RESUMO

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Adulto , Animais , Estimulação Elétrica , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia/fisiopatologia , Espaço Extracelular/fisiologia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microeletrodos , Pessoa de Meia-Idade , Córtex Somatossensorial/fisiologia , Análise de Ondaletas , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685634

RESUMO

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Assuntos
Ritmo alfa , Córtex Cerebral/fisiologia , Eletrodos , Eletroencefalografia , Humanos , Tálamo/fisiologia
6.
Neuroimage ; 226: 117587, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249216

RESUMO

Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.


Assuntos
Epilepsia Resistente a Medicamentos , Córtex Pré-Frontal/fisiologia , Sono/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Eletrocorticografia , Eletrodos Implantados , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Vias Neurais , Adulto Jovem
7.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008628

RESUMO

Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated-in conjunction with the electron microscopy-that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.


Assuntos
Sincronização Cortical/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Inibição Neural/fisiologia , Potenciais de Ação , Adulto , Idoso , Idoso de 80 Anos ou mais , Epilepsia/patologia , Feminino , Humanos , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Masculino , Pessoa de Meia-Idade , Neocórtex/patologia , Neocórtex/ultraestrutura , Parvalbuminas/metabolismo , Receptores de Canabinoides/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
8.
J Neurosci ; 38(12): 3013-3025, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29449429

RESUMO

Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation.


Assuntos
Córtex Cerebral/fisiologia , Consolidação da Memória/fisiologia , Sono/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Physiol ; 597(23): 5639-5670, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31523807

RESUMO

KEY POINTS: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. ABSTRACT: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.


Assuntos
Epilepsia/fisiopatologia , Neocórtex/fisiologia , Adulto , Idoso , Bicuculina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Adulto Jovem
10.
Behav Res Methods ; 51(1): 280-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30094726

RESUMO

We developed a method that can identify polarized public opinions by finding modules in a network of statistically related free word associations. Associations to the cue "migrant" were collected from two independent and comprehensive samples in Hungary (N1 = 505, N2 = 505). The co-occurrence-based relations of the free word associations reflected emotional similarity, and the modules of the association network were validated with well-established measures. The positive pole of the associations was gathered around the concept of "Refugees" who need help, whereas the negative pole associated asylum seekers with "Violence." The results were relatively consistent in the two independent samples. We demonstrated that analyzing the modular organization of association networks can be a tool for identifying the most important dimensions of public opinion about a relevant social issue without using predefined constructs.


Assuntos
Processamento Eletrônico de Dados/métodos , Associação Livre , Opinião Pública , Humanos , Refugiados
11.
J Physiol ; 596(2): 317-342, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29178354

RESUMO

KEY POINTS: Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT: Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.


Assuntos
Potenciais de Ação , Excitabilidade Cortical , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Sinapses/fisiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Biomed Microdevices ; 19(3): 49, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28560702

RESUMO

This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-µm-wide, 65-µm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-µm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 µW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 µW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.


Assuntos
Encéfalo/metabolismo , Fibras Ópticas , Optogenética/instrumentação , Semicondutores , Animais , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Camundongos , Fenômenos Ópticos , Silício
13.
Sensors (Basel) ; 17(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048396

RESUMO

We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission).

14.
J Neurophysiol ; 116(5): 2312-2330, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535370

RESUMO

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Eletrodos Implantados , Rede Nervosa/fisiologia , Silício , Tálamo/fisiologia , Estimulação Acústica/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Ratos , Ratos Wistar
15.
Eur J Neurosci ; 44(3): 1935-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27177594

RESUMO

Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation.


Assuntos
Ondas Encefálicas , Córtex Somatossensorial/fisiologia , Analgésicos/farmacologia , Animais , Potenciais Somatossensoriais Evocados , Feminino , Ketamina/farmacologia , Masculino , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos , Xilazina/farmacologia
16.
J Neurosci ; 34(27): 9152-63, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990935

RESUMO

The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Estimulação Elétrica , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Método Simples-Cego , Adulto Jovem
17.
Hippocampus ; 25(2): 169-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25209976

RESUMO

Hippocampal sharp wave-ripples (SPW-Rs) occur during slow wave sleep and behavioral immobility and are thought to play an important role in memory formation. We investigated the cellular and network properties of SPW-Rs with simultaneous laminar multielectrode and intracellular recordings in a rat hippocampal slice model, using physiological bathing medium. Spontaneous SPW-Rs were generated in the dentate gyrus (DG), CA3, and CA1 regions. These events were characterized by a local field potential gradient (LFPg) transient, increased fast oscillatory activity and increased multiple unit activity (MUA). Two types of SPW-Rs were distinguished in the CA3 region based on their different LFPg and current source density (CSD) pattern. Type 1 (T1) displayed negative LFPg transient in the pyramidal cell layer, and the associated CSD sink was confined to the proximal dendrites. Type 2 (T2) SPW-Rs were characterized by positive LFPg transient in the cell layer, and showed CSD sinks involving both the apical and basal dendrites. In both types, consistent with the somatic CSD source, only a small subset of CA3 pyramidal cells fired, most pyramidal cells were hyperpolarized, while most interneurons increased firing rate before the LFPg peak. Different neuronal populations, with different proportions of pyramidal cells and distinct subsets of interneurons were activated during T1 and T2 SPW-Rs. Activation of specific inhibitory cell subsets-with the possible leading role of perisomatic interneurons-seems to be crucial to synchronize distinct ensembles of CA3 pyramidal cells finally resulting in the expression of different SPW-R activities. This suggests that the hippocampus can generate dynamic changes in its activity stemming from the same excitatory and inhibitory circuits, and so, might provide the cellular and network basis for an input-specific and activity-dependent information transmission.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Estimulação Elétrica , Feminino , Ácido Glutâmico/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Periodicidade , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos Wistar , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
18.
Brain ; 137(Pt 2): 463-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390441

RESUMO

Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.


Assuntos
Potenciais de Ação/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Animais , Feminino , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia
19.
J Neurosci ; 33(28): 11677-91, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843535

RESUMO

Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.


Assuntos
Potenciais de Ação/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Neurônios/fisiologia , Animais , Feminino , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Transmissão Sináptica/fisiologia
20.
Hum Brain Mapp ; 35(12): 5736-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044884

RESUMO

The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies.


Assuntos
Potenciais Evocados/fisiologia , Neocórtex/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Eletrodos Implantados , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Feminino , Lateralidade Funcional , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neocórtex/cirurgia , Vias Neurais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA