RESUMO
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.
Assuntos
1-Naftilisotiocianato , Colestase , Glicogênio Sintase Quinase 3 beta , NF-kappa B , Piridonas , Receptores Citoplasmáticos e Nucleares , Fator de Necrose Tumoral alfa , Via de Sinalização Wnt , Animais , Piridonas/farmacologia , NF-kappa B/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 1-Naftilisotiocianato/toxicidade , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/tratamento farmacológico , Colestase/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologiaRESUMO
The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1ß (interleukine-1ß) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.
RESUMO
Zamzam water is a natural alkaline water which has become alkaline as a result of the natural environment. It comes from what is considered as one of the oldest springs in the world. The water contains high concentrations of alkaline minerals as well as trace and heavy metals. The aim of the current study is to evaluate the effects of five weeks ingestion of Zamzam water on the liver and kidney functions of rats. Adult female Wistar rats weighing 150-200 g were divided into two groups, with 15 rats in each. The control group was supplied daily by bottled water and the Zamzam water group was supplied daily by 500 ml of Zamzam water for five weeks. The rats were weighed weekly and, at the end of the experiment, blood samples were collected from all rats for the biochemical determination of serum levels of aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), urea, creatinine, albumin, and uric acid, using calorimetric methods. Liver and kidney tissues were fixed in 10% neutral buffered-formalin solution and further embedded in wax blocks for routine hematoxylin and eosin (H&E) staining and were examined for histopathological changes using a light microscope. The results of the current study showed that there was a significant increase (P < 0.05) in the weight of the Zamzam group when compared to the control group after five weeks of ingestion. Liver and kidney function tests did not show any significant difference when compared with the controls (P > 0.05). In addition, histological examination of the liver and kidney tissues did not show any toxicological changes. In conclusion, the results showed that the ingestion of Zamzam water did not alter serum levels of kidney function tests and liver enzymes; and did not result in a noticeable change in the liver and kidney histology. Thus, the high concentrations of elements in Zamzam water do not induce hepatotoxicity or nephrotoxicity and the water is considered safe for long-term consumption.
RESUMO
Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.
Assuntos
Anticarcinógenos/farmacologia , Proteínas do Ovo/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/farmacologia , Fosfatidilserinas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismoRESUMO
BACKGROUND: Zamzam water is naturally alkaline and rich in a variety of minerals which may represent a powerful tool for cancer therapy. In this research, the cytotoxic effects of Zamzam water were investigated in human lung cancer (A549) cell line and compared with human skin fibroblasts (HSF). METHODS: Two different preparations of Zamzam water were used: Z1, with pH adjusted to 7.2 and Z2, with no pH adjustment. The effects of both treatments on the morphology of the A549 and HSF cell lines were investigated. The cell viability of HSF and A549 cells was identified by the MTT assay and trypan blue exclusion. Detection of apoptotic cells and cell cycle analyses were determined using flow cytometry. Moreover, reactive oxygen species (ROS) were measured for both cell lines. RESULTS: Both Zamzam water treatments, Z1 and Z2 showed reductions in the cell viability of A549 cells. Cell death occurred via necrosis among cells treated with Z2. Cell cycle arrest occurred in the G0/G1 phases for cells treated with Z2. Cellular and mitochondrial ROS productions were not affected by either treatment. CONCLUSION: Our findings indicate that Zamzam water might have potential therapeutic efficacy for lung cancer.
RESUMO
Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.
Assuntos
Falência Hepática Aguda , NF-kappa B , Tomatina/análogos & derivados , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Fígado , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Necrose/metabolismo , Galactosamina/farmacologiaRESUMO
Diabetes mellitus (DM) is one of the most common diseases worldwide. DM may disrupt hormone regulation. Metabolic hormones, leptin, ghrelin, glucagon, and glucagon-like peptide 1, are produced by the salivary glands and taste cells. These salivary hormones are expressed at different levels in diabetic patients compared to control group and may cause differences in the perception of sweetness. This study is aimed at assessing the concentrations of salivary hormones leptin, ghrelin, glucagon, and GLP-1 and their correlations with sweet taste perception (including thresholds and preferences) in patients with DM. A total of 155 participants were divided into three groups: controlled DM, uncontrolled DM, and control groups. Saliva samples were collected to determine salivary hormone concentrations by ELISA kits. Varying sucrose concentrations (0.015, 0.03, 0.06, 0.12, 0.25, 0.5, and 1 mol/l) were used to assess sweetness thresholds and preferences. Results showed a significant increase in salivary leptin concentrations in the controlled DM and uncontrolled DM compared to the control group. In contrast, salivary ghrelin and GLP-1 concentrations were significantly lower in the uncontrolled DM group than in the control group. In general, HbA1c was positively correlated with salivary leptin concentrations and negatively correlated with salivary ghrelin concentrations. Additionally, in both the controlled and uncontrolled DM groups, salivary leptin was negatively correlated with the perception of sweetness. Salivary glucagon concentrations were negatively correlated with sweet taste preferences in both controlled and uncontrolled DM. In conclusion, the salivary hormones leptin, ghrelin, and GLP-1 are produced either higher or lower in patients with diabetes compared to the control group. In addition, salivary leptin and glucagon are inversely associated with sweet taste preference in diabetic patients.
Assuntos
Diabetes Mellitus , Glucagon , Humanos , Peptídeo 1 Semelhante ao Glucagon , Paladar , Grelina , Percepção Gustatória , Leptina , Fatores de TranscriçãoRESUMO
The present study was conducted to isolate and characterize bacteria from water and soil sample taken from the Lahore Canal at different sites i.e. Mall Road, Mohlanwal and Khera site. Isolated bacterial strains were identified on the basis of morphological and biochemical tests. Identification was confirmed by culturing bacteria on selective media. Antibiotic resistance test was also performed to observe the resistance of bacteria against different antibiotics. Blood agar test was performed for identification of different pathogenic bacteria. The result revealed that water and soil samples of Lahore Canal Lahore from different sites were contaminated with Escherichia coli, Salmonella sp., Vibrio sp., Bacillus spp., Enterococcus sp. and Staphylococcus spp. Due to presence of these pathogens, this water is not suitable for any domestic and irrigation use. Study also revealed that water of the Lahore Canal is harmful for human health as it is contaminated with bacteria that can cause severe disease e.g., Escherichia coli can cause gastroenteritis, Bacillus spp. can cause nausea and vomiting, Enterococcus may infect urinary tract, Salmonella sp. is responsible for Bacteremia, Staphylococcus spp. can cause mild fever and Vibrio sp. can be the reason of cholera. Thus it is rendered unfit for any kind of human use even other than drinking like swimming, bathing, washing etc., until and unless some remedial measures are employed to eradicate pathogenic microorganisms by WASA and LWMS according to standards of WHO. Similarly, it is quite harmful, when and where ever it is used for irrigation without proper treatment.
Assuntos
Bactérias , Solo , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Humanos , ÁguaRESUMO
Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.
Assuntos
Cádmio , Monócitos , Cádmio/metabolismo , Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Cloreto de Cádmio/toxicidade , Humanos , Mitocôndrias , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
RESUMO
Icariin (ICA), a main active compound of the Epimedium genus, is used as an aphrodisiac in traditional Chinese herbal medicine. Despite its therapeutic efficacy, ICA displays reduced oral absorption, and therefore, low bioavailability hindered its clinical application. Implementing nanotechnology in the field of formulation has been a focus to improve the efficacy of ICA. In this regard, polymeric nanoparticles find a potential application as drug delivery systems. A nanosphere formula was designed, aiming to improve the drug's efficacy. The proposed ICA nanosphere formula (tocozeinolate) was optimized using D-optimal response surface design. The concentrations of ICA (X1), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS, X2), zein (X3), and sodium deoxycholate (SDC, X4) expressed as percentages were investigated as quantitative independent variables. As per the experimental design, 23 formulations were developed, which were investigated for particle size (PS, nm), zeta potential (ZP, mV), and entrapment efficiency (EE, %) as response parameters. Numerical optimization and desirability approach were employed to predict the optimized variable levels that, upon combination, could result in minimized size and maximized zeta potential and ICA entrapment. The optimized ICA-tocozeinolate nanospheres showed a particle size of 224.45 nm, zeta potential of 0.961 mV, and drug entrapment of 65.29% that coincide well with the predicted values. The optimized ICA-tocozeinolate nanospheres were evaluated for sexual behavior in Wistar male rats compared to raw ICA at equivalent doses (20 mg/kg). In vivo assessment results showed significant sexual behavior enhancement by the optimized formulation, as evidenced by decreased average time of both mount latency (ML) and ejaculation latency (EL) to almost half those of raw ICA. Additionally, intromission latency (IL) time was reduced by 41% compared to the raw ICA. These results highlighted the potential of the proposed ICA-tocozeinolate nanospheres as a promising platform for improving the delivery and efficacy of therapeutic agents.
RESUMO
The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Bacteroides , Bacteroidetes , Dieta Hiperlipídica/efeitos adversos , Disbiose , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Prevotella , RNA Ribossômico 16S/genética , RuminococcusRESUMO
Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.
RESUMO
OBJECTIVES: To measure the blood expression levels of related drug-resistant ATP-binding cassette (ABC) transporters in colorectal cancer (CRC) patients and to assess these examined transporters for whether they present signi cant expression in connection with the tumor appearance of CRC. METHODS: In this case-control study, the messenger ribonucleic acids were isolated from the blood of 62 CRC patients who were recruited from King Abdulaziz University Hospital Oncology Clinic and 46 controls from King Fahad General Hospital Blood Bank (Jeddah, Saudi Arabia) from September 2016 to March 2017. The Biomedical Ethics Unit at King Abdulaziz University, Jeddah, Saudi Arabia approved this study. The expressions of ABC transporters were measured using quantitative polymerase chain reaction. GraphPad Prism 5 and REST 2009 Software were used to correlate the expressions with clinicopathological independent stages and body mass index. A p-value of less than 0.05 was considered significant. RESULTS: The results showed that the 3 ABC transporters, particularly ABCC1 (p less than 0.0001), were highly expressed in the blood of CRC patients compared with controls. However, none of the 3 transporters was related to the progression of CRC, age, gender, or body mass index. CONCLUSION: The expressions of ABC transporters were found to be significantly higher in CRC patients, and they may act as diagnostic markers and should potentially be tested for their contribution to drug sensitivity in CRC patients.
Assuntos
Transportadores de Cassetes de Ligação de ATP/sangue , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/diagnóstico , Expressão Gênica , Subfamília B de Transportador de Cassetes de Ligação de ATP/sangue , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Estudos de Casos e Controles , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/sangue , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase , Arábia SauditaRESUMO
Among all cancer types, colorectal cancer is the third most common in men and the second most common in women globally. Generally, the risk of colorectal cancer increases with age, and colorectal cancer is modulated by various genetic alterations. Alterations in the immune response serve a significant role in the development of colorectal cancer. In primary cancer types, immune cells express a variety of inhibitory molecules that dampen the immune response against tumor cells. Additionally, few reports have demonstrated that classical chemotherapy promotes the immunosuppressive microenvironment in both tissues and immune cells. This study assessed the expression levels of genes using RT-qPCR associated with the immune system, including interferon-γ, programmed death-1, ß2-microglobulin, human leukocyte antigen-A, CD3e, CD28 and intracellular adhesion molecule 1, in patients with colorectal cancer, as these genes are known to serve important roles in immune regulation during cancer incidence. Gene expression analysis was performed with the whole blood cells of patients with colorectal cancer and healthy volunteers. Compared with the normal controls, programmed death-1was highly expressed in patients with advanced-stage colorectal cancer. Furthermore, the expression of programmed death-1 was higher in patients receiving adjuvant therapy, which suggests the therapy dampened the immune response against tumor cells. The results of the present study indicate that classical adjuvant therapies, which are currently used for patients with colorectal cancer, should be modulated, and a combination of classical therapy with anti-programmed death-1 antibody should be conducted for improved management of patients with colorectal cancer.
Assuntos
Neoplasias Colorretais/genética , Expressão Gênica , Células Neoplásicas Circulantes/metabolismo , Receptor de Morte Celular Programada 1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Comorbidade , Feminino , Humanos , Imunomodulação/genética , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Multidrug resistance member 1 (MDR1) is located on chromosome 7 and encodes P-glycoprotein, which is universally accepted as a drug resistance biomarker. MDR1 polymorphisms can alter protein expression or function, which has been previously reported to associate with various types of malignancies, such as colorectal cancer (CRC). Therefore, the present study aimed to determine the effects of MDR1 polymorphisms on drug responses of Saudi patients with CRC. DNA samples were obtained from 62 patients with CRC and 100 healthy controls. Genotypes and allele frequencies of MDR1 single nucleotide polymorphisms (SNPs) G2677T and T1236C were determined using the PCR-restriction fragment length polymorphism procedure. The results showed no significant differences in the genotype distribution and allele frequency of T1236C between patients with CRC and controls. However, G2677T was found to serve a highly significant role in protecting against the progression of CRC. In addition, none of the genotypes in SNPs T1236C and G2677T was found to affect chemoresistance to XELIRI and XELOX. In conclusion, although T1236C in the MDR1 gene is not associated with CRC risk, G2677T protects against the development of CRC. Neither of the MDR1 SNPs tested were associated with the risk of chemoresistance. Therefore, these two SNPs cannot be used as molecular markers for predicting drug response in patients with CRC.
RESUMO
The present study was conducted to isolate and characterize bacteria from water and soil sample taken from the Lahore Canal at different sites i.e. Mall Road, Mohlanwal and Khera site. Isolated bacterial strains were identified on the basis of morphological and biochemical tests. Identification was confirmed by culturing bacteria on selective media. Antibiotic resistance test was also performed to observe the resistance of bacteria against different antibiotics. Blood agar test was performed for identification of different pathogenic bacteria. The result revealed that water and soil samples of Lahore Canal Lahore from different sites were contaminated with Escherichia coli, Salmonella sp., Vibrio sp., Bacillus spp., Enterococcus sp. and Staphylococcus spp. Due to presence of these pathogens, this water is not suitable for any domestic and irrigation use. Study also revealed that water of the Lahore Canal is harmful for human health as it is contaminated with bacteria that can cause severe disease e.g., Escherichia coli can cause gastroenteritis, Bacillus spp. can cause nausea and vomiting, Enterococcus may infect urinary tract, Salmonella sp. is responsible for Bacteremia, Staphylococcus spp. can cause mild fever and Vibrio sp. can be the reason of cholera. Thus it is rendered unfit for any kind of human use even other than drinking like swimming, bathing, washing etc., until and unless some remedial measures are employed to eradicate pathogenic microorganisms by WASA and LWMS according to standards of WHO. Similarly, it is quite harmful, when and where ever it is used for irrigation without proper treatment.
O presente estudo foi realizado para isolar e caracterizar bactérias de amostras de água e solo retiradas do Canal Lahore, em Lahore, em diferentes locais, ou seja, Mall Road, Mohlanwal e Khera. As cepas bacterianas isoladas foram identificadas com base em testes morfológicos e bioquímicos. A identificação foi confirmada por cultura de bactérias em testes de meios seletivos. O teste de resistência aos antibióticos também foi realizado para observar a resistência das bactérias a diferentes antibióticos. Foi realizado o teste de ágar sangue para identificar diferentes bactérias patogênicas. O resultado revelou que amostras de água e solo do Canal Lahore, Lahore, de diferentes localidades estavam contaminadas com Escherichia coli, Salmonella sp., Vibrio sp., Bacillus spp., Enterococcus sp. e Staphylococcus spp. Por causa da presença desses patógenos, essa água não é adequada para qualquer uso doméstico e de irrigação. O estudo revelou que a água do Canal Lahore é prejudicial à saúde humana, pois está contaminada com bactérias que podem causar doenças graves, por exemplo: Escherichia coli pode ocasionar gastroenterite; Bacillus spp. pode causar náuseas e vômitos; Enterococcus sp. pode infectar o trato urinário; Salmonella sp. é responsável pela bacteremia; Staphylococcus spp. pode causar febre leve; e Vibrio sp. pode ser a razão da cólera. Assim, torna-se imprópria para uso humano, como natação, banho, lavagem etc., até que algumas medidas corretivas sejam empregadas para erradicar microrganismos patogênicos por WASA e LWMS de acordo com os padrões da OMS. Da mesma forma, é bastante prejudicial, quando usada para irrigação sem tratamento adequado.
Assuntos
Animais , Solo , Staphylococcus , Vibrio , Resistência Microbiana a Medicamentos , Amostras de Água , Enterococcus , Escherichia coliRESUMO
OBJECTIVES: To determine the role of G128C and C218T variants in ABCC1 gene with the risk of developing colon cancer in Jeddah, Kingdom of Saudi Arabia. Methods: This case-control study was conducted on 51 colon cancer patients and 65 controls from King Abdulaziz University Hospital and King Abdullah Medical City in the period from January 2015 to April 2017, and was approved by the Unit of Biomedical Ethics (no: 261-15). Experiments were performed in the experimental biochemistry unit at King Fahd Medical Research Center. The genotype distributions and allele frequencies were determined by polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) and DNA sequencing. A Chi-square test was used to determine allele and genotype distributions, odds ratio (OR), risk ratio (RR) and 95% confidence intervals (CI). P-values of less than 0.05 were considered statistically significant. Results: The results showed a novel association between heterozygous (CT) genotype for variant C218T and increased risk of colon cancer [OR=3.4, 95% CI (1.56-7.48), and RR=1.92, 95% CI (1.26-2.93), p=0.002]. These ratios were correlated with high-grade stages (III and IV). In contrast, for variant G128C, there was no significant association with the risk of developing colon cancer. Conclusion: The novel findings of the study revealed that the CT genotype of variant C218T in ABCC1 gene may increase the risk of developing colon cancer.
Assuntos
Neoplasias do Colo/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias do Colo/patologia , Frequência do Gene , Heterozigoto , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Objectives: The aim of this study was to investigate the potential influence of hyperthyroidism on serum chemerin, visfatin, and omentin concentrations. The relationship between these adipokines and thyroid profile values was also investigated. Methods: A total of 140 female Saudi participants aged 20-45 years were recruited and divided into two groups, the euthyroid control group (n = 70) and the hyperthyroidism group (n = 70). Chemerin, visfatin, omentin, and thyroid profile including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), total triiodothyronine (TT3), total thyroxine (TT4), and thyroglobulin were measured for all participants. Results: Serum chemerin levels were significantly higher in patients with hyperthyroidism compared to the controls. In contrast, serum visfatin and omentin concentrations were significantly lower in hyperthyroid patients than controls. Moreover, serum chemerin concentrations were positively correlated with TT3, TT4, and FT3 and negatively correlated with TSH and FT4. A negative correlation was also found between FT4 and TT4 and serum visfatin concentrations. Inversely, TSH correlated positively with serum visfatin levels. No significant correlation was observed between serum omentin concentrations and any of the thyroid profile variables except FT3. Conclusion: Hyperthyroidism influences serum chemerin, visfatin, and omentin concentrations, and these adipokines are correlated with thyroid hormones.
RESUMO
BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent cancers in Saudi Arabia that is highly characterized with poor survival rate and advanced metastasis. Many studies contribute this poor outcome to the expression of ABC transporters on the surface of cancer cells. OBJECTIVES: In this study, two ABCB1 variants, C3435T and T129C, were examined to evaluate their contribution to CRC risk. METHODS: 125 subjects (62 CRC patients and 63 healthy controls) were involved. The DNA was isolated and analyzed with PCR-RFLP to determine the different genotypes. The hardy-Weinberg equilibrium was performed to determine genotype distribution and allele frequencies. Fisher's exact test (two-tailed) was used to compare allele frequencies between patients and control subjects. RESULTS: The study showed that for SNP C3435T, the population of both CRC patients and controls were out of Hardy-Weinberg equilibrium. Genotype distribution for CRC patients was (Goodness of fit χ2 = 20, df= 1, P≤0.05), whereas, for the controls the genotype distribution was (Goodness of fit χ2 = 21, df =1, P ≤0.05). For SNP T129C, all subjects showed normal (TT) genotype. CONCLUSION: There was no significant association between ABCB1 3435C>T and 129T>C polymorphisms with CRC risk.