Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Soc Nephrol ; 33(3): 511-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228297

RESUMO

BACKGROUND: Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS: We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS: Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS: Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Creatinina , Humanos , Polimorfismo de Nucleotídeo Único , Isomerases de Dissulfetos de Proteínas/genética , Uromodulina/genética
2.
Nature ; 514(7520): 92-97, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25231870

RESUMO

Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.


Assuntos
Alelos , Loci Gênicos/genética , Menarca/genética , Pais , Adolescente , Fatores Etários , Índice de Massa Corporal , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio , Doenças Cardiovasculares/genética , Criança , Diabetes Mellitus Tipo 2/genética , Europa (Continente)/etnologia , Feminino , Estudo de Associação Genômica Ampla , Impressão Genômica/genética , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/genética , Obesidade/genética , Ovário/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Proteínas/genética , Locos de Características Quantitativas/genética , Receptores de GABA-B/metabolismo , Receptores do Ácido Retinoico/metabolismo , Ribonucleoproteínas/genética , Ubiquitina-Proteína Ligases
3.
Drug Dev Res ; 81(5): 593-599, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32173896

RESUMO

Alterations in peripheral vascular endothelial growth factor (VEGF) levels were observed in major depressive disorder and relative treatments and were shown to be influenced by genetic variants. The study objective was to explore, at a genome-wide level, possible interplaying effects between the genetic background and major depressive disorder in regulating VEGF levels. Moreover, we aimed to investigate the association between these variants and response to electroconvulsive therapy. A genome-wide association study was carried out both on controls and patients with major depressive disorder (n = 145; n = 121) in correlation with serum VEGF levels determined by ELISA. Five SNPs not included in SNP arrays were additionally genotyped. Seventy-one patients with treatment-resistant depression underwent electroconvulsive therapy and were evaluated as responders/nonresponders. An association between VEGF levels and a locus in 6p21.1, downstream the VEGF gene, was evidenced both in controls (best SNP: FDR-corrected p = 2.4 × 10-5 ) and in patients with major depressive disorder (best SNP: FDR-corrected p = 2.6 × 10-3 ). The alleles associated with lower VEGF concentrations in patients were also associated with nonresponse to electroconvulsive therapy (p = .01). These results confirm a role of SNPs in 6p21.1 locus as major influencers of circulating VEGF levels also in patients affected by major depressive disorder and indicate a possible implication in response to electroconvulsive therapy.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/terapia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
4.
J Am Soc Nephrol ; 29(1): 335-348, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093028

RESUMO

Magnesium (Mg2+) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg2+, which is crucial for Mg2+ homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg2+ homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10-13) near TRPM6, which encodes an epithelial Mg2+ channel, and rs35929 (P=2.1×10-11), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg2+ regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg2+ wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg2+ deficiency to insulin resistance and obesity.


Assuntos
Fatores de Ribosilação do ADP/genética , Homeostase/genética , Rim/metabolismo , Magnésio/sangue , Magnésio/urina , Canais de Cátion TRPM/genética , Adiposidade/genética , Animais , Proteínas de Ligação ao GTP/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Insulina/sangue , Resistência à Insulina/genética , Magnésio/administração & dosagem , Camundongos , Obesidade/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Nature ; 492(7429): 369-75, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23222517

RESUMO

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.


Assuntos
Eritrócitos/metabolismo , Loci Gênicos , Estudo de Associação Genômica Ampla , Fenótipo , Animais , Ciclo Celular/genética , Citocinas/metabolismo , Drosophila melanogaster/genética , Eritrócitos/citologia , Feminino , Regulação da Expressão Gênica/genética , Hematopoese/genética , Hemoglobinas/genética , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Interferência de RNA , Transdução de Sinais/genética
6.
Pflugers Arch ; 469(1): 91-103, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27915449

RESUMO

The nature and importance of genetic factors regulating the differential handling of Ca2+ and Mg2+ by the renal tubule in the general population are poorly defined. We conducted a genome-wide meta-analysis of urinary magnesium-to-calcium ratio to identify associated common genetic variants. We included 9320 adults of European descent from four genetic isolates and three urban cohorts. Urinary magnesium and calcium concentrations were measured centrally in spot urine, and each study conducted linear regression analysis of urinary magnesium-to-calcium ratio on ~2.5 million single-nucleotide polymorphisms (SNPs) using an additive model. We investigated, in mouse, the renal expression profile of the top candidate gene and its variation upon changes in dietary magnesium. The genome-wide analysis evidenced a top locus (rs172639, p = 1.7 × 10-12), encompassing CLDN14, the gene coding for claudin-14, that was genome-wide significant when using urinary magnesium-to-calcium ratio, but not either one taken separately. In mouse, claudin-14 is expressed in the distal nephron segments specifically handling magnesium, and its expression is regulated by chronic changes in dietary magnesium content. A genome-wide approach identified common variants in the CLDN14 gene exerting a robust influence on the differential excretion of Mg2+ over Ca2+ in urine. These data highlight the power of urinary electrolyte ratios to unravel genetic determinants of renal tubular function. Coupled with mouse experiments, these results support a major role for claudin-14, a gene associated with kidney stones, in the differential paracellular handling of divalent cations by the renal tubule.


Assuntos
Cálcio/urina , Claudinas/genética , Magnésio/urina , Polimorfismo de Nucleotídeo Único/genética , Urina/química , Animais , Cálcio/metabolismo , Humanos , Túbulos Renais/metabolismo , Magnésio/metabolismo
7.
PLoS Genet ; 10(4): e1004234, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743097

RESUMO

Many existing cohorts contain a range of relatedness between genotyped individuals, either by design or by chance. Haplotype estimation in such cohorts is a central step in many downstream analyses. Using genotypes from six cohorts from isolated populations and two cohorts from non-isolated populations, we have investigated the performance of different phasing methods designed for nominally 'unrelated' individuals. We find that SHAPEIT2 produces much lower switch error rates in all cohorts compared to other methods, including those designed specifically for isolated populations. In particular, when large amounts of IBD sharing is present, SHAPEIT2 infers close to perfect haplotypes. Based on these results we have developed a general strategy for phasing cohorts with any level of implicit or explicit relatedness between individuals. First SHAPEIT2 is run ignoring all explicit family information. We then apply a novel HMM method (duoHMM) to combine the SHAPEIT2 haplotypes with any family information to infer the inheritance pattern of each meiosis at all sites across each chromosome. This allows the correction of switch errors, detection of recombination events and genotyping errors. We show that the method detects numbers of recombination events that align very well with expectations based on genetic maps, and that it infers far fewer spurious recombination events than Merlin. The method can also detect genotyping errors and infer recombination events in otherwise uninformative families, such as trios and duos. The detected recombination events can be used in association scans for recombination phenotypes. The method provides a simple and unified approach to haplotype estimation, that will be of interest to researchers in the fields of human, animal and plant genetics.


Assuntos
Haplótipos/genética , Mapeamento Cromossômico/métodos , Efeito de Coortes , Família , Genótipo , Humanos , Modelos Genéticos , Linhagem , Fenótipo , Recombinação Genética/genética
8.
PLoS Genet ; 9(9): e1003796, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068962

RESUMO

Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.


Assuntos
Osso e Ossos/metabolismo , Cálcio/sangue , Estudo de Associação Genômica Ampla , Homeostase/genética , Animais , Densidade Óssea/genética , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , População Branca/genética
9.
PLoS Genet ; 8(7): e1002655, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829771

RESUMO

Stature is a classical and highly heritable complex trait, with 80%-90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ(2) = 83.89, df = 1; p = 5.2 × 10(-20)). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.


Assuntos
Estatura/genética , Consanguinidade , Genes Recessivos , Heterogeneidade Genética , Característica Quantitativa Herdável , Adulto , Idoso , Bases de Dados Genéticas , Família , Feminino , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
10.
PLoS Genet ; 8(3): e1002584, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479191

RESUMO

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.


Assuntos
Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Falência Renal Crônica/genética , Rim/fisiopatologia , Peixe-Zebra/genética , ATPases Associadas a Diversas Atividades Celulares , Negro ou Afro-Americano/genética , Idoso , Animais , Caspase 9/genética , Quinases Ciclina-Dependentes/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Proteínas de Ligação a DNA , Feminino , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/genética , População Branca/genética
11.
J Am Soc Nephrol ; 25(8): 1869-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24578125

RESUMO

Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P<0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 µg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P<0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.


Assuntos
Variação Genética/genética , Uromodulina/urina , População Branca/genética , Creatinina/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Uromodulina/genética
12.
Hum Mol Genet ; 21(24): 5329-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22962313

RESUMO

In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Predisposição Genética para Doença/genética , Taxa de Filtração Glomerular/genética , Taxa de Filtração Glomerular/fisiologia , Humanos , Subunidades beta de Inibinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas de Membrana/genética
13.
J Am Soc Nephrol ; 24(12): 2105-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24029420

RESUMO

Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.


Assuntos
Variação Genética , Rim/fisiologia , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/genética , População Branca/genética , Bases de Dados Genéticas , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
14.
World J Biol Psychiatry ; 24(2): 135-148, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35615967

RESUMO

OBJECTIVES: Major depressive disorder (MDD) is a psychiatric disorder with pathogenesis influenced by both genetic and environmental factors. To date, the molecular-level understanding of its aetiology remains unclear. Thus, we aimed to identify genetic variants and susceptibility genes for MDD with a genome-wide association study (GWAS) approach. METHODS: We performed a meta-analysis of GWASs and a gene-based analysis on two Northern Italy isolated populations (cases/controls n = 166/472 and 33/320), followed by replication and polygenic risk score (PRS) analyses in Italian independent samples (cases n = 464, controls n = 339). RESULTS: We identified two novel MDD-associated genes, KCNQ5 (lead SNP rs867262, p = 3.82 × 10-9) and CTNNA2 (rs6729523, p = 1.25 × 10-8). The gene-based analysis revealed another six genes (p < 2.703 × 10-6): GRM7, CTNT4, SNRK, SRGAP3, TRAPPC9, and FHIT. No replication of the genome-wide significant SNPs was found in the independent cohort, even if 14 SNPs around CTNNA2 showed association with MDD and related phenotypes at the nominal level of p (<0.05). Furthermore, the PRS model developed in the discovery cohort discriminated cases and controls in the replication cohort. CONCLUSIONS: Our work suggests new possible genes associated with MDD, and the PRS analysis confirms the polygenic nature of this disorder. Future studies are required to better understand the role of these findings in MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial , Itália , Polimorfismo de Nucleotídeo Único
15.
J Med Genet ; 48(6): 369-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21493956

RESUMO

BACKGROUND: Hearing is a complex trait, but until now only a few genes are known to contribute to variability of this process. In order to discover genes and pathways that underlie auditory function, a genome-wide association study was carried out within the International Consortium G-EAR. METHODS: Meta-analysis of genome-wide association study's data from six isolated populations of European ancestry for an overall number of 3417 individuals. RESULTS: Eight suggestive significant loci (p<10(-7)) were detected with a series of genes expressed within the inner ear such as: DCLK1, PTPRD, GRM8, CMIP. Additional biological candidates marked by a single nucleotide polymorphism (SNP) with a suggestive association (p<10(-6)) were identified, as well as loci encompassing 'gene desert regions'-genes of unknown function or genes whose function has not be linked to hearing so far. Some of these new loci map to already known hereditary hearing loss loci whose genes still need to be identified. Data have also been used to construct a highly significant 'in silico' pathway for hearing function characterised by a network of 49 genes, 34 of which are certainly expressed in the ear. CONCLUSION: These results provide new insights into the molecular basis of hearing function and may suggest new targets for hearing impairment treatment and prevention.


Assuntos
Efeito Fundador , Estudo de Associação Genômica Ampla/métodos , Perda Auditiva/genética , Audição/genética , População Branca/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Limiar Auditivo , Proteínas de Transporte/genética , Bases de Dados Genéticas , Quinases Semelhantes a Duplacortina , Europa (Continente)/epidemiologia , Feminino , Ligação Genética , Perda Auditiva/etnologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Receptores de Glutamato Metabotrópico/genética
16.
Front Genet ; 13: 982508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386832

RESUMO

The sequencing of cell-free fetal DNA in the maternal plasma through non-invasive prenatal testing (NIPT) is an accurate genetic screening test to detect the most common fetal aneuploidies during pregnancy. The extensive use of NIPT, as a screening method, has highlighted the limits of the technique, including false positive and negative results. Feto-placental mosaicism is a challenging biological issue and is the most frequent cause of false positive and negative results in NIPT screening, and of discrepancy between NIPT and invasive test results. We are reporting on two cases of feto-placental mosaicism of trisomy 21, both with a low-risk NIPT result, identified by ultrasound signs and a subsequent amniocentesis consistent with a trisomy 21. In both cases, after the pregnancy termination, cytogenetic and/or cytogenomic analyses were performed on the placenta and fetal tissues, showing in the first case a mosaicism of trisomy 21 in both the placenta and the fetus, but a mosaicism in the placenta and a complete trisomy 21 in the fetus in the second case. These cases emphasize the need for accurate and complete pre-test NIPT counselling, as well as to identify situations at risk for a possible false negative NIPT result, which may underestimate a potential pathological condition, such as feto-placental mosaicism or fetal trisomy. Post-mortem molecular autopsy may discriminate between placental, fetal and feto-placental mosaicism, and between complete or mosaic fetal chromosomal anomalies. A multidisciplinary approach in counselling, as well as in the interpretation of biological events, is essential for the clarification of complex cases, such as feto-placental mosaicisms.

17.
Brain Sci ; 11(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34439726

RESUMO

BACKGROUND: Coffin-Lowry syndrome (CLS) is a syndromic form of X-linked intellectual disability, in which specific associated facial, hand, and skeletal abnormalities are diagnostic features. METHODS: In the present study, an unreported missense genetic variant of the ribosomal S6 kinase 2 (RSK2) gene has been identified, by next-generation sequencing, in two related males with two different phenotypes of intellectual disability (ID) and peculiar facial dysmorphisms. We performed functional studies on this variant and another one, already reported in the literature, involving the same amino acid residue but, to date, without an efficient characterization. RESULTS: Our study demonstrated that the two variants involving residue 189 significantly impaired its kinase activity. CONCLUSIONS: We detected a loss-of-function RSK2 mutation with loss in kinase activity in a three-generation family with an X-linked ID.

18.
Amino Acids ; 38(1): 65-73, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19067108

RESUMO

The study of two different Italian isolated populations was combined with a metabonomic approach to better understand tubular handling of amino acids. Levels of amino acids and metabolites have been analyzed by Nucleic Magnetic Resonance and expressed as ratio vs urinary creatinine concentration (mmol/mol). For most of the amino acids there is an age-related U shape pattern of excretion, with the peaks during childhood and old age, and a significant reduction in the adult age. Hierarchical cluster analysis has clearly identified three groups clustering the same amino acids: His, Thr and Ala (group one); Gly and Phe (group two) and a third larger one. Results have been further confirmed by factor and regression analysis, and used to confirm and, in some cases, infer new amino acids networks. As a matter of facts, the identification of strong evidences for clustering of urine excretion of several neutral amino acids suggests the predominant impact of relevant and common transporters.


Assuntos
Aminoácidos/urina , Metabolômica , Grupos Populacionais , Adolescente , Adulto , Fatores Etários , Idoso , Aminoácidos/química , Criança , Pré-Escolar , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , População Rural , Adulto Jovem
19.
J Nephrol ; 23(6): 667-76, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20564000

RESUMO

INTRODUCTION: Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. METHODS: Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. RESULTS: Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. CONCLUSION: This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.


Assuntos
Mutação de Sentido Incorreto , Multimerização Proteica , Transaminases/genética , Sequência de Aminoácidos , Feminino , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Transaminases/química
20.
Nat Commun ; 11(1): 2542, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439900

RESUMO

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.


Assuntos
Arritmias Cardíacas/genética , Eletrocardiografia , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Arritmias Cardíacas/fisiopatologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Endofenótipos , Feminino , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA