RESUMO
From the past to the present, many chemicals have been used for the purpose of flame retardant. Due to PBDEs' (Polybrominated diphenyl ether) lipophilic and accumulative properties, some of them are banned from the market. As an alternative to these chemicals, OPFRs (organophosphorus flame retardants) have started to be used as flame retardants. In this article, acute toxicity profiles, mutagenicity, carcinogenicity, blood-brain barrier permeability, ecotoxicity and nutritional toxicity as also AHR, ER affinity and MMP, aromatase affinity, CYP2C9, CYP3A4 interaction of the of 16 different compounds of the OPFRs were investigated using a computational toxicology method; ProTox- 3.0. According to our results, eight compounds were found to be active in terms of carcinogenic effect, whereas two compounds were found to be active for mutagenicity. On the other hand, all compounds were found to be active in terms of blood-barrier permeability. Fourteen compounds and four compounds are found to have ecotoxic and nutritional toxic potency, respectively. Eight compounds were determined as active to AhR, and four chemicals were found to be active in Estrogen Receptor alpha. Eight chemicals were found to be active in terms of mitochondrial membrane potency. Lastly, three chemicals were found to be active in aromatase enzymes. In terms of CYP interaction potencies, eight compounds were found to be active in both CYP2C9 and CYP3A4. This research provided novel insights into the potential toxic effects of OPFRs. However, further studies are needed to evaluate their toxicity. Moreover, these findings lay the groundwork for in vitro and in vivo toxicity research.
RESUMO
This paper describes a study of the quantify surface roughness of experimentally manufactured particleboards and sandwiched panels having fibers on the surface layers. Surface quality of specimens before and after being overlaid with thin melamine impregnated papers was determined by employing profilometer equipment. Roughness measurements and Janka hardness were carried out on the specimens conditioned at 60% and 95% relative humidity levels. Based on the findings in this work, surface roughness of the specimens that were exposed two relative humidity exposure showed significant differences from each others. Data determined in this study could be beneficial to understand behavior of such panels exposed different humidity levels.
RESUMO
The objective of this study was to evaluate some of the properties of densified eastern redcedar as function of temperature and pressure. Surface quality, adhesive bondline shear strength, hardness, and color changes of the samples compressed using different temperature levels ranging from 100 °C to 180 °C were investigated. Based on the findings in this work, surface roughness of compressed specimens decreased with increased temperature. Overall adhesive bondline shear strength of the samples decreased as compared to that of control specimens as a result of compression. It appears that densified samples exposed to a temperature of 180 °C had significantly darker surface than those of the others, based on color measurement. Data found in this work provide some basic information for more efficient use of underutilized species such as eastern redcedar.