RESUMO
Within fluid mechanics, the flow of hybrid nanofluids over a stretching surface has been extensively researched due to their influence on the flow and heat transfer properties. Expanding on this concept by introducing porous media, the current study explore the flow and heat and mass transport characteristics of hybrid nanofluid. This investigation includes the effect of magnetohydrodynamic (MHD) with chemical reaction, thermal radiation, and slip effects. The nanoparticles, copper, and alumina are combined with water for the formation of a hybrid nanofluid. Using the self-similar method for the reduction of Partial differential equations (PDEs) to the system of Ordinary differential equations (ODEs). These nonlinear equation systems are solved numerically using the bvp4c (boundary value solver) technique. The effect of the different physical non-dimensional flow parameters on different flow profiles such as velocity, temperature, concentration, skin friction, Nusselt and mass transfer rate are depicted through graphs and tables. The velocity profiles diminish with the effect of magnetic and slip parameters. The temperature and concentration slip parameters reduce the temperature and concentration profile respectively. The higher values of magnetic factor lessened the skin friction coefficient for both slip and no-slip conditions. An elevation in the thermal slip parameter reduced the boundary layer thickness and the heat transfer from the surface to the fluid. The Nusselt number amplified with the climbing values of the radiation parameter. The mass transfer rate depressed with the solutal slip parameter. Comparison is made with the published work in the literature and there is excellent agreement between them.
RESUMO
The present works focus on the effects of electric and magnetic fields on the flow of micro-polar nano-fluid between two parallel plates with rotation under the impact of Hall current (EMMN-PPRH) has considered by using Artificial Neural Networks with the scheme of Levenberg-Marquardt backpropagation (ANN-SLMB). The nonlinear PDEs are transformed into nonlinear ODEs by employing similarity variables. By varying different parameters such as coupling parameter, electric parameter, rotation parameter, viscosity parameter, Prandtl number and the Brownian motion parameter, a dataset for recommended ANN-SLMB is produced for numerous scenarios through utilizing homotopy analysis method (HAM). The ANN-SLMB training, testing and validation technique have been used to analyze the approximate solution of individual cases, and the recommended model has matched for confirmation. After that, regression analysis, MSE, and histogram investigations were utilized to validate the proposed ANN-SLMB. The recommended technique is distinguished nearest of the suggested and reference findings, with an accuracy level ranging from 10-09 to 10-11.
RESUMO
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.