Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-19, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004515

RESUMO

Filamentous plant pathogens, including fungi and oomycetes, pose significant threats to cultivated crops, impacting agricultural productivity, quality and sustainability. Traditionally, disease control heavily relied on fungicides, but concerns about their negative impacts motivated stakeholders and government agencies to seek alternative solutions. Biocontrol agents (BCAs) have been developed as promising alternatives to minimize fungicide use. However, BCAs often exhibit inconsistent performances, undermining their efficacy as plant protection alternatives. The eukaryotic cell wall of plants and filamentous pathogens contributes significantly to their interaction with the environment and competitors. This highly adaptable and modular carbohydrate armor serves as the primary interface for communication, and the intricate interplay within this compartment is often mediated by carbohydrate-active enzymes (CAZymes) responsible for cell wall degradation and remodeling. These processes play a crucial role in the pathogenesis of plant diseases and contribute significantly to establishing both beneficial and detrimental microbiota. This review explores the interplay between cell wall dynamics and glycan interactions in the phytobiome scenario, providing holistic insights for efficiently exploiting microbial traits potentially involved in plant disease mitigation. Within this framework, the incorporation of glycobiology-related functional traits into the resident phytobiome can significantly enhance the plant's resilience to biotic stresses. Therefore, in the rational engineering of future beneficial consortia, it is imperative to recognize and leverage the understanding of cell wall interactions and the role of the glycome as an essential tool for the effective management of plant diseases.

2.
Microbiol Spectr ; 12(8): e0034824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38888349

RESUMO

The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and ß-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in ß-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.


Assuntos
Membrana Celular , Doenças dos Peixes , Proteômica , Saprolegnia , Animais , Doenças dos Peixes/parasitologia , Proteômica/métodos , Membrana Celular/metabolismo , Parede Celular/metabolismo , Parede Celular/química , Proteoma/análise , Peixes/parasitologia , Proteínas de Membrana/metabolismo
3.
Int J Biol Macromol ; 244: 125385, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330097

RESUMO

Pectin methylesterases (PMEs) are enzymes that play a critical role in modifying pectins, a class of complex polysaccharides in plant cell walls. These enzymes catalyze the removal of methyl ester groups from pectins, resulting in a change in the degree of esterification and consequently, the physicochemical properties of the polymers. PMEs are found in various plant tissues and organs, and their activity is tightly regulated in response to developmental and environmental factors. In addition to the biochemical modification of pectins, PMEs have been implicated in various biological processes, including fruit ripening, defense against pathogens, and cell wall remodelling. This review presents updated information on PMEs, including their sources, sequences and structural diversity, biochemical properties and function in plant development. The article also explores the mechanism of PME action and the factors influencing enzyme activity. In addition, the review highlights the potential applications of PMEs in various industrial sectors related to biomass exploitation, food, and textile industries, with a focus on development of bioproducts based on eco-friendly and efficient industrial processes.


Assuntos
Hidrolases de Éster Carboxílico , Pectinas , Hidrolases de Éster Carboxílico/química , Pectinas/metabolismo , Esterificação , Parede Celular/metabolismo
4.
Biosensors (Basel) ; 12(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354449

RESUMO

Biolayer interferometry (BLI) is a well-established laboratory technique for studying biomolecular interactions important for applications such as drug development. Currently, there are interesting opportunities for expanding the use of BLI in other fields, including the development of rapid diagnostic tools. To date, there are no detailed frameworks for implementing BLI in target-recognition studies that are pivotal for developing point-of-need biosensors. Here, we attempt to bridge these domains by providing a framework that connects output(s) of molecular interaction studies with key performance indicators used in the development of point-of-need biosensors. First, we briefly review the governing theory for protein-ligand interactions, and we then summarize the approach for real-time kinetic quantification using various techniques. The 2020 PRISMA guideline was used for all governing theory reviews and meta-analyses. Using the information from the meta-analysis, we introduce an experimental framework for connecting outcomes from BLI experiments (KD, kon, koff) with electrochemical (capacitive) biosensor design. As a first step in the development of a larger framework, we specifically focus on mapping BLI outcomes to five biosensor key performance indicators (sensitivity, selectivity, response time, hysteresis, operating range). The applicability of our framework was demonstrated in a study of case based on published literature related to SARS-CoV-2 spike protein to show the development of a capacitive biosensor based on truncated angiotensin-converting enzyme 2 (ACE2) as the receptor. The case study focuses on non-specific binding and selectivity as research goals. The proposed framework proved to be an important first step toward modeling/simulation efforts that map molecular interactions to sensor design.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Espectroscopia Dielétrica , SARS-CoV-2 , COVID-19/diagnóstico , Interferometria/métodos , Técnicas Biossensoriais/métodos
5.
Int J Biol Macromol ; 127: 385-395, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30654038

RESUMO

Commercial interest in plant cell wall degrading enzymes (PCWDE) is motivated by their potential for energy or bioproduct generation that reduced dependency on non-renewable (fossil-derived) feedstock. Therefore, underlying work analysed the Penicillium chrysogenum isolate for PCWDE production by employing different biomass as a carbon source. Among the produced enzymes, three xylanase isoforms were observed in the culture filtrate containing sugarcane bagasse. Xylanase (PcX1) presenting 35 kDa molecular mass was purified by gel filtration and anion exchange chromatography. Unfolding was probed and analysed using fluorescence, circular dichroism and enzyme assay methods. Secondary structure contents were estimated by circular dichroism 45% α-helix and 10% ß-sheet, consistent with the 3D structure predicted by homology. PcX1 optimally active at pH 5.0 and 30 °C, presenting t1/2 19 h at 30 °C and 6 h at 40 °C. Thermodynamic parameters/melting temperature 51.4 °C confirmed the PcX1 stability at pH 5.0. PcX1 have a higher affinity for oat spelt xylan, KM 1.2 mg·mL-1, in comparison to birchwood xylan KM 29.86 mg·mL-1, activity was inhibited by Cu+2 and activated by Zn+2. PcX1 exhibited significant tolerance for vanillin, trans-ferulic acid, ρ-coumaric acid, syringaldehyde and 4-hydroxybenzoic acid, activity slightly inhibited (17%) by gallic and tannic acid.


Assuntos
Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Penicillium chrysogenum/enzimologia , Agricultura , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Resíduos de Serviços de Saúde , Estrutura Secundária de Proteína , Desdobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA