Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(43): e1902514, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31464377

RESUMO

Surfaces decorated with high aspect ratio nanostructures are a promising tool to study cellular processes and design novel devices to control cellular behavior. However, little is known about the dynamics of cellular phenomenon such as adhesion, spreading, and migration on such surfaces. In particular, how these are influenced by the surface properties. In this work, fibroblast behavior is investigated on regular arrays of 1 µm high polymer nanopillars with varying pillar to pillar distance. Embryonic mouse fibroblasts (NIH-3T3) spread on all arrays, and on contact with the substrate engulf nanopillars independently of the array pitch. As the cells start to spread, different behavior is observed. On dense arrays which have a pitch equal or below 1 µm, cells are suspended on top of the nanopillars, making only sporadic contact with the glass support. Cells stay attached to the glass support and fully engulf nanopillars during spreading and migration on the sparse arrays which have a pitch of 2 µm and above. These alternate states have a profound effect on cell migration rates. Dynamic F-actin puncta colocalize with nanopillars during cell spreading and migration. Strong membrane association with engulfed nanopillars might explain the reduced migration rates on sparse arrays.


Assuntos
Movimento Celular , Fibroblastos/citologia , Nanoestruturas/química , Actinas/metabolismo , Animais , Adesão Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Nanoestruturas/ultraestrutura , Vinculina/metabolismo
2.
Nat Commun ; 11(1): 2270, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385301

RESUMO

Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1ß release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage.


Assuntos
Membrana Celular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Tuberculose/metabolismo , Tuberculose/patologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Catepsinas/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Inflamassomos/metabolismo , Inflamassomos/ultraestrutura , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA