Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562403

RESUMO

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Assuntos
Briófitas , Mudança Climática , Ecossistema , Aclimatação , Adaptação Fisiológica , Tibet , Briófitas/fisiologia
2.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007417

RESUMO

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Assuntos
Chara/genética , Genoma de Planta , Evolução Biológica , Parede Celular/metabolismo , Chara/crescimento & desenvolvimento , Embriófitas/genética , Redes Reguladoras de Genes , Pentosiltransferases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513609

RESUMO

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Assuntos
Brassicaceae , Frutas , Regulação da Expressão Gênica de Plantas , Germinação , Sementes , Temperatura , Germinação/genética , Germinação/fisiologia , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Ácido Abscísico/metabolismo
4.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952198

RESUMO

SUMMARY: For model species, single-cell RNA-based cell atlases are available. A good cell atlas includes all major stages in a species' ontogeny, and soon, they will be standard even for nonmodel species. Here, we propose a Python package called oggmap, which allows for the easy extraction of an orthomap (gene ages per orthogroup) for any given query species from OrthoFinder and other gene family data resources, like homologous groups from eggNOG or PLAZA. oggmap provides extracted gene ages for more than thousand eukaryotic species which can be further used to calculate gene age-weighted expression data from scRNA sequencing objects using the Python Scanpy toolkit. Not limited to one transcriptome evolutionary index, oggmap can visualize the individual gene category (e.g. age class, nucleotide diversity bin) and their corresponding expression profiles to investigate scRNA-based cell type assignments in an evolutionary context. AVAILABILITY AND IMPLEMENTATION: oggmap source code is available at https://github.com/kullrich/oggmap, documentation is available at https://oggmap.readthedocs.io/en/latest/. oggmap can be installed via PyPi or directly used via a docker container.


Assuntos
Documentação , Software
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539202

RESUMO

SUMMARY: Interpreting and visualizing synteny relationships across several genomes is a challenging task. We previously proposed a network-based approach for better visualization and interpretation of large-scale microsynteny analyses. Here, we present syntenet, an R package to infer and analyze synteny networks from whole-genome protein sequence data. The package offers a simple and complete framework, including data preprocessing, synteny detection and network inference, network clustering and phylogenomic profiling, and microsynteny-based phylogeny inference. Graphical functions are also available to create publication-ready plots. Synteny networks inferred with syntenet can highlight taxon-specific gene clusters that likely contributed to the evolution of important traits, and microsynteny-based phylogenies can help resolve phylogenetic relationships under debate. AVAILABILITY AND IMPLEMENTATION: syntenet is available on Bioconductor (https://bioconductor.org/packages/syntenet), and the source code is available on a GitHub repository (https://github.com/almeidasilvaf/syntenet). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Sintenia , Filogenia
7.
BMC Genomics ; 23(1): 212, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296233

RESUMO

BACKGROUND: PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types - that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. RESULTS: Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales - shared across North Atlantic and North Pacific minke whale subspecies boundaries. CONCLUSION: The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility.


Assuntos
Baleia Anã , Alelos , Animais , Histona-Lisina N-Metiltransferase/genética , Meiose , Baleia Anã/genética , Dedos de Zinco/genética
8.
Plant J ; 102(1): 165-177, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31714620

RESUMO

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.


Assuntos
Bryopsida/genética , Transcriptoma , Atlas como Assunto , Bryopsida/metabolismo , Conjuntos de Dados como Assunto , Expressão Gênica/genética , Genes de Plantas/genética , Internet , Micorrizas/metabolismo , Transcriptoma/genética
9.
PLoS Comput Biol ; 16(11): e1008354, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180766

RESUMO

Systematic knockout studies in mice have shown that a large fraction of the gene replacements show no lethal or other overt phenotypes. This has led to the development of more refined analysis schemes, including physiological, behavioral, developmental and cytological tests. However, transcriptomic analyses have not yet been systematically evaluated for non-lethal knockouts. We conducted a power analysis to determine the experimental conditions under which even small changes in transcript levels can be reliably traced. We have applied this to two gene disruption lines of genes for which no function was known so far. Dedicated phenotyping tests informed by the tissues and stages of highest expression of the two genes show small effects on the tested phenotypes. For the transcriptome analysis of these stages and tissues, we used a prior power analysis to determine the number of biological replicates and the sequencing depth. We find that under these conditions, the knockouts have a significant impact on the transcriptional networks, with thousands of genes showing small transcriptional changes. GO analysis suggests that A930004D18Rik is involved in developmental processes through contributing to protein complexes, and A830005F24Rik in extracellular matrix functions. Subsampling analysis of the data reveals that the increase in the number of biological replicates was more important that increasing the sequencing depth to arrive at these results. Hence, our proof-of-principle experiment suggests that transcriptomic analysis is indeed an option to study gene functions of genes with weak or no traceable phenotypic effects and it provides the boundary conditions under which this is possible.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Estudos de Associação Genética/métodos , Animais , Comportamento Animal , Biologia Computacional , Extremidades/anatomia & histologia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Estudos de Associação Genética/estatística & dados numéricos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fenótipo , Estudo de Prova de Conceito , RNA-Seq/estatística & dados numéricos , Transcriptoma
10.
BMC Evol Biol ; 20(1): 56, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414322

RESUMO

BACKGROUND: Amylase gene clusters have been implicated in adaptive copy number changes in response to the amount of starch in the diet of humans and mammals. However, this interpretation has been questioned for humans and for mammals there is a paucity of information from natural populations. RESULTS: Using optical mapping and genome read information, we show here that the amylase cluster in natural house mouse populations is indeed copy-number variable for Amy2b paralogous gene copies (called Amy2a1 - Amy2a5), but a direct connection to starch diet is not evident. However, we find that the amylase cluster was subject to introgression of haplotypes between Mus musculus sub-species. A very recent introgression can be traced in the Western European populations and this leads also to the rescue of an Amy2b pseudogene. Some populations and inbred lines derived from the Western house mouse (Mus musculus domesticus) harbor a copy of the pancreatic amylase (Amy2b) with a stop codon in the first exon, making it non-functional. But populations in France harbor a haplotype introgressed from the Eastern house mouse (M. m. musculus) with an intact reading frame. Detailed analysis of phylogenetic patterns along the amylase cluster suggest an additional history of previous introgressions. CONCLUSIONS: Our results show that the amylase gene cluster is a hotspot of introgression in the mouse genome, making it an evolutionary active region beyond the previously observed copy number changes.


Assuntos
Amilases/genética , Família Multigênica , Pseudogenes , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Genoma , Haplótipos/genética , Camundongos , Filogenia , Alinhamento de Sequência
11.
Plant J ; 95(1): 168-182, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681058

RESUMO

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Assuntos
Bryopsida/genética , Conjuntos de Dados como Assunto , Genes de Plantas/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética
12.
Plant J ; 93(3): 515-533, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29237241

RESUMO

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Assuntos
Evolução Biológica , Bryopsida/genética , Cromossomos de Plantas , Genoma de Planta , Centrômero , Cromatina/genética , Metilação de DNA , Elementos de DNA Transponíveis , Variação Genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Sintenia
13.
BMC Genomics ; 20(1): 95, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700268

RESUMO

BACKGROUND: RNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy - producing both a less dormant mucilaginous (M+) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs). RESULTS: A de novo transcriptome assembly was generated using sequences from M+ and NM Ae. arabicum dry seed morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict consensus of three methods (DESeq2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M+ dry seeds, whereas terms related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs amongst these GO terms included ribosomal proteins and histones (higher in M+), RNA polymerase II subunits and related transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed development and maturation such as ABI3, FUS3, LEC1 and WRI1 homologs) were put in context with Arabidopsis thaliana seed maturation and indicated that M+ seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms. CONCLUSIONS: Whilst there was only modest overlap of DEGs identified in reference-free versus -dependent approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and germination behaviour of M+ and NM seeds.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcriptoma , Perfilação da Expressão Gênica , Ontologia Genética , Genoma de Planta , Germinação , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Proteínas de Plantas/genética
14.
J Exp Bot ; 70(12): 3313-3328, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949700

RESUMO

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.


Assuntos
Brassicaceae/fisiologia , Expressão Gênica/efeitos da radiação , Genes de Plantas , Germinação/efeitos da radiação , Luz Solar , Ácido Abscísico/metabolismo , Brassicaceae/efeitos da radiação , Giberelinas/metabolismo , Transcriptoma/efeitos dos fármacos
15.
Plant J ; 90(3): 606-620, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161906

RESUMO

Rich ecotype collections are used for several plant models to unravel the molecular causes of phenotypic differences, and to investigate the effects of environmental adaption and acclimation. For the model moss Physcomitrella patens collections of accessions are available, and have been used for phylogenetic and taxonomic studies, for example, but few have been investigated further for phenotypic differences. Here, we focus on the Reute accession and provide expression profiling and comparative developmental data for several stages of sporophyte development, as well as information on genetic variation via genomic sequencing. We analysed cross-technology and cross-laboratory data to define a confident set of 15 mature sporophyte-specific genes. We find that the standard laboratory strain Gransden produces fewer sporophytes than Reute or Villersexel, although gametangia develop with the same time course and do not show evident morphological differences. Reute exhibits less genetic variation relative to Gransden than Villersexel, yet we found variation between Gransden and Reute in the expression profiles of several genes, as well as variation hot spots and genes that appear to evolve under positive Darwinian selection. We analyzed expression differences between the ecotypes for selected candidate genes in the GRAS transcription factor family, the chalcone synthase family and in genes involved in cell wall modification that are potentially related to phenotypic differences. We confirm that Reute is a P. patens ecotype, and suggest its use for reverse-genetics studies that involve progression through the life cycle and multiple generations.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Bryopsida/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único/genética
16.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076547

RESUMO

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Biológicos , Sphagnopsida/genética , Adaptação Fisiológica , Evolução Biológica , Ecologia , Filogenia , Análise de Sequência de DNA , Sphagnopsida/citologia , Sphagnopsida/fisiologia
17.
Plant Physiol ; 175(2): 982-994, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28860155

RESUMO

Members of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) family are known auxin receptors. To analyze the possible receptor function of AUXIN BINDING PROTEIN1 (ABP1), an auxin receptor currently under debate, we performed different approaches. We performed a pharmacological approach using α-(2,4-dimethylphenylethyl-2-oxo)-indole-3-acetic acid (auxinole), α-(phenylethyl-2-oxo)-indole-3-acetic acid (PEO-IAA), and 5-fluoroindole-3-acetic acid (5-F-IAA) to discriminate between ABP1- and TIR1/AFB-mediated processes in Arabidopsis (Arabidopsis thaliana). We used a peptide of the carboxyl-terminal region of AtABP1 as a tool. We performed mutant analysis with the null alleles of ABP1, abp1-c1 and abp1-TD1, and the TILLING mutant abp1-5 We employed Coimbra, an accession that exhibits an amino acid exchange in the auxin-binding domain of ABP1. We measured either volume changes of single hypocotyl protoplasts or hypocotyl growth, both at high temporal resolution. 5-F-IAA selectively activated the TIR1/AFB pathway but did not induce protoplast swelling; instead, it showed auxin activity in the hypocotyl growth test. In contrast, PEO-IAA induced an auxin-like swelling response but no hypocotyl growth. The carboxyl-terminal peptide of AtABP1 induced an auxin-like swelling response. In the ABP1-related mutants and Coimbra, no auxin-induced protoplast swelling occurred. ABP1 seems to be involved in mediating rapid auxin-induced protoplast swelling, but it is not involved in the control of rapid auxin-induced growth.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Hipocótilo/genética , Hipocótilo/fisiologia , Mutação , Proteínas de Plantas/genética , Protoplastos/fisiologia , Receptores de Superfície Celular/genética
18.
Mol Ecol ; 25(3): 776-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676992

RESUMO

Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high- and low-elevation plots on four different mountains situated along a 170-km east-west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east-west isolation by distance among mountain sites. F(ST) outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using F(ST) outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. Q(ST)-F(ST) tests for fitness-related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east-to-west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.


Assuntos
Abies/genética , Temperatura Baixa , Secas , Genética Populacional , Seleção Genética , Abies/fisiologia , Adaptação Fisiológica/genética , Teorema de Bayes , Clima , DNA de Plantas/genética , França , Frequência do Gene , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Árvores/genética
19.
BMC Plant Biol ; 14: 178, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24985152

RESUMO

BACKGROUND: Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis. RESULTS: To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants. CONCLUSION: Our results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have been functionally conserved during evolution, while the SPA proteins showed considerable functional divergence. This may - at least in part - reflect the fact that COP1 is a single copy gene in seed plants, while SPA proteins are encoded by a small gene family of two to four members with possibly sub- or neofunctionalized tasks.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bryopsida/metabolismo , Evolução Molecular , Luz , Morfogênese/efeitos da radiação , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hipocótilo/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transgenes/genética
20.
Genetics ; 226(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38217871

RESUMO

PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.


Assuntos
Infertilidade , Animais , Humanos , Masculino , Camundongos , Éxons , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Infertilidade/genética , Camundongos Endogâmicos C57BL , Fenótipo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA