Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 45(11): 3009-3012, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479445

RESUMO

Photodetectors with internal gain are of great interest for imaging applications, since internal gain reduces the effective noise of readout electronics. High-gain photodetectors have been demonstrated, but only individually rather than as a full array in a camera. Consequently, there has been little investigation of the interaction between camera complementary metal oxide semiconductor (CMOS) electronics and the slow response time that high-gain photodetectors often exhibit. Here we show that this interaction filters shot noise and causes noise statistics to differ from the common Poisson distribution. As an example, we investigate a 320×256 array of InGaAs/InP high-gain phototransistors bonded to a CMOS readout chip. We demonstrate the filtering effects and discuss their consequences, including new (to the best of our knowledge) methods for extracting gain and increasing dynamic range.

2.
Opt Express ; 23(22): 28605-18, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561130

RESUMO

In this paper wepresent a method to correct the surface profile of an X-ray mirror by using a stress manipulated coating on the back side of mirror shells. The ability to fabricate a thin walled mirror by some replication process is required if future affordable X-ray space missions are to have ~30 times the effective area of the current best X-ray observatory, i.e., the Chandra X-ray Observatory (CXO). Thus, some process is necessary for using replicated X-ray optics to make the next generation X-ray observatory. However, although the surface roughness of sub-100 µm length scales can be replicated, no known replication technique can make 1 arc-second or better CXO-like optics. Yet, because the images produced by the CXO are so exquisite, many X-ray astronomers are not willing to settle for less in the future. Therefore, a post replication technique must be developed to make future major X-ray astronomy missions possible. In this paper, we describe a technique based on DC magnetron sputtering. For figure correction, we apply a controlled bias voltage on the surface during the sputtering. We show that we can produce, in 1-D, shape changes large enough (1 µm over 10 mm) to correct the typical figure errors in replicated optics. We demonstrate reproducibility on an order of 0.6%, and stability over weeks on a scale of less than 1 µm over 10 mm. For these tests, we used 200 µm thick pieces of D263 Schott glass, about 5 mm x 20 mm. In addition to the basic concept of controlling the stress with the coating, we describe a new optimization software design to calculate the stress distribution for a desired surface profile. We show that the combination of the stress optimization software coupled with the coating process, can reduce the slope error of a 5 mm x 20 mm glass sample by a factor of ten.

3.
Appl Opt ; 42(34): 6945-52, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14661809

RESUMO

A method of fabricating replica figured x-ray optics with integral multilayer coatings is presented. With the intact electroforming multilayer process (IEMP) technique, we sputter multilayers onto a reusable superpolished mandrel, electroform nickel over the multilayers, and remove the multilayer-coated nickel shell intact from the mandrel. This approach offers advantages over more traditional, original, and segmented-replica fabrication techniques, including low cost; compatibility with a wide range of mirror designs, diameters, and focal lengths; simple integration with multilayer sputtering processes; and the ability to produce complete shells of revolution. The fabrication of W/Si multilayer-coated 10-cm-diameter conical x-ray mirrors is described, as are reflectivity measurements at 10 and 30 keV. The measured reflectivity of the IEMP multilayers at the 10-keV primary Bragg peak was 17%. Measurements of multiple points on the cone showed multilayer uniformity to within a few percent around the mirror.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA