Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 80(17): 8552-60, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26274096

RESUMO

Collagens are an important family of structural proteins found in the extracellular matrix with triple helix as the characteristic structural motif. The collagen triplex is made of three left-handed polyproline II (PPII) helices with each PPII strand consisting of repetitive units of the tripeptide motif X-Y-Gly, where the amino acids X and Y are most commonly proline (Pro) and 4R-hydroxyproline (Hyp), respectively. A C4-endo pucker at X-site and C4-exo pucker at Y-site have been proposed to be the key for formation of triplex, and the nature of pucker is dependent on both the electronegativity and stereochemistry of the substituent. The present manuscript describes a new class of collagen analogues-chimeric cationic collagens-wherein both X- and Y-sites in collagen triad are simultaneously substituted by a combination of 4(R/S)-(OH/NH2/NH3(+)/NHCHO)-prolyl units and triplex stabilities measured at different pHs and in EG:H2O. Based on the results a model has been proposed with the premise that any factors which specifically favor the ring puckers of C4-endo at X-site and C4-exo at Y-site stabilize the PPII conformation and hence the derived triplexes. The pH-dependent triplex stability uniquely observed with ionizable 4-amino substituent on proline enables one to define the critical combination of factors C4-(exo/endo), intraresidue H-bonding, stereoelectronic (R/S) and n → π* interactions in dictating the triplex strength. The ionizable NH2 substituent at C4 in R/S configuration is thus a versatile probe for delineating the triplex stabilizing factors and the results have potential for designing of collagen analogues with customized properties for material and biological applications.


Assuntos
Colágeno/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Peptídeos/química , Prolina/análogos & derivados , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Prolina/química , Conformação Proteica , Estereoisomerismo
2.
Biochemistry ; 52(13): 2245-61, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23470147

RESUMO

Peptide triazole (PT) entry inhibitors prevent HIV-1 infection by blocking the binding of viral gp120 to both the HIV-1 receptor and the coreceptor on target cells. Here, we used all-atom explicit solvent molecular dynamics (MD) to propose a model for the encounter complex of the peptide triazoles with gp120. Saturation transfer difference nuclear magnetic resonance (STD NMR) and single-site mutagenesis experiments were performed to test the simulation results. We found that docking of the peptide to a conserved patch of residues lining the "F43 pocket" of gp120 in a bridging sheet naïve gp120 conformation of the glycoprotein led to a stable complex. This pose prevents formation of the bridging sheet minidomain, which is required for receptor-coreceptor binding, providing a mechanistic basis for dual-site antagonism of this class of inhibitors. Burial of the peptide triazole at the gp120 inner domain-outer domain interface significantly contributed to complex stability and rationalizes the significant contribution of hydrophobic triazole groups to peptide potency. Both the simulation model and STD NMR experiments suggest that the I-X-W [where X is (2S,4S)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine] tripartite hydrophobic motif in the peptide is the major contributor of contacts at the gp120-PT interface. Because the model predicts that the peptide Trp side chain hydrogen bonding with gp120 S375 contributes to the stability of the PT-gp120 complex, we tested this prediction through analysis of peptide binding to gp120 mutant S375A. The results showed that a peptide triazole KR21 inhibits S375A with 20-fold less potency than WT, consistent with predictions of the model. Overall, the PT-gp120 model provides a starting point for both the rational design of higher-affinity peptide triazoles and the development of structure-minimized entry inhibitors that can trap gp120 into an inactive conformation and prevent infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Peptídeos/farmacologia , Triazóis/farmacologia , Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica/efeitos dos fármacos , Triazóis/química
3.
ChemMedChem ; 5(11): 1871-9, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20677318

RESUMO

In an effort to identify broadly active inhibitors of HIV-1 entry into host cells, we previously reported a family of dodecamer triazole-peptide conjugates with nanomolar affinity for the viral surface protein gp120. This peptide class exhibits potent antiviral activity and the capacity to simultaneously inhibit interaction of the viral envelope protein with both CD4 and co-receptor. In this investigation, we minimized the structural complexity of the lead triazole inhibitor HNG-156 (peptide 1) to explore the limits of the pharmacophore that enables dual antagonism and to improve opportunities for peptidomimetic design. Truncations of both carboxy- and amino-terminal residues from the parent 12-residue peptide 1 were found to have minimal effects on both affinity and antiviral activity. In contrast, the central triazole(Pro)-Trp cluster at residues 6 and 7 with ferrocenyl-triazole(Pro) (Ftp) was found to be critical for bioactivity. Amino-terminal residues distal to the central triazole(Pro)-Trp sequence tolerated decreasing degrees of side chain variation upon approaching the central cluster. A peptide fragment containing residues 3-7 (Asn-Asn-Ile-Ftp-Trp) exhibited substantial direct binding affinity, antiviral potency, dual receptor site antagonism, and induction of gp120 structuring, all properties that define the functional signature of the parent compound 1. This active core contains a stereochemically specific hydrophobic triazole(Pro)-Trp cluster, with a short N-terminal peptide extension providing groups for potential main chain and side chain hydrogen bonding. The results of this work argue that the pharmacophore for dual antagonism is structurally limited, thereby enhancing the potential to develop minimized peptidomimetic HIV-1 entry inhibitors that simultaneously suppress binding of envelope protein to both of its host cell receptors. The results also argue that the target epitope on gp120 is relatively small, pointing to a localized allosteric inhibition site in the HIV-1 envelope that could be targeted for small-molecule inhibitor discovery.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Peptídeos/metabolismo , Triazóis/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Antígenos CD4/metabolismo , Domínio Catalítico , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Dados de Sequência Molecular , Peptídeos/química , Ressonância de Plasmônio de Superfície , Termodinâmica , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA