Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(26): 267207, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368613

RESUMO

The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.

2.
J Phys Condens Matter ; 24(35): 354003, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22898901

RESUMO

Electronic doping is a key concept for tuning the properties of organic materials. In bulk structures, the charge transfer between donor and acceptor is mainly given by the respective ionization potential and electron affinity. In contrast, monolayers of charge transfer complexes in contact with a metal are affected by an intriguing interplay of hybridization and screening at the metallic interface, determining the resulting charge state. Using scanning tunneling microscopy and spectroscopy, we characterize the electronic properties of the organic acceptor molecule 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) adsorbed on a Au(111) surface. The ordered islands remain in a weakly physisorbed state with no charge transfer interaction with the substrate. When the electron donor tetrathiafulvalene (TTF) is added, ordered arrays of alternating TNAP and TTF rows are assembled. In these structures, we find the lowest unoccupied molecular orbital (LUMO) of the free TNAP molecule shifted well below the Fermi level of the substrate. The TNAP is thus charged with more than one electron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA