Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(40): 27145-53, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26417728

RESUMO

To probe the influence of hydrogen bonding on the electronic structure of ammonia, gas phase and aqueous NH3 have been investigated using soft X-ray absorption (XAS), resonant inelastic soft X-ray scattering (RIXS), and electronic structure calculations including dynamical effects. Strong spectral differences in the XAS scans as well as in the RIXS spectra between gas phase and aqueous NH3 are attributed to orbital mixing with the water orbitals, dipole-dipole interactions, differences in vibronic coupling, and nuclear dynamics on the time-scale of the RIXS process. All of these effects are consequences of hydrogen bonding and the impact of the associated orbitals, demonstrating the power of XAS and RIXS as unique tools to study hydrogen bonding in liquids.

2.
J Chem Phys ; 135(10): 104705, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21932916

RESUMO

We have employed a unique spectroscopic approach, a resonant inelastic soft x-ray scattering (RIXS) map, to identify and separate electron-hole correlation effects in core-level spectroscopy. With this approach, we are able to derive a comprehensive picture of the electronic structure, separating ground state properties (such as the HOMO-LUMO separation) from excited state properties (such as the C 1s core-exciton binding energy of C(60)). In particular, our approach allows us to determine the difference between core- and valence exciton binding energies in C(60) [0.5 (±0.2) eV]. Furthermore, the RIXS map gives detailed insight into the symmetries of the intermediate and final states of the RIXS process.

3.
J Chem Phys ; 129(24): 244708, 2008 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123527

RESUMO

Thin films of perylene on Si(111) and Si(100) substrates have been investigated using a variety of experimental techniques. We find that the structural and morphological properties as well as the growth modes strongly depend on the preparation parameters. In general, we observe the existence of a relatively weak coupling between perylene and the two single crystal substrates. However, under special preparation conditions, it is possible to obtain a multilayer phase on the Si(111) substrate that is characterized by flat-lying, parallel-oriented molecules, and strong coupling with the substrate in the first layer. This phase has different structural, electronic, and intermolecular bonding properties as compared to the known crystalline phases. On Si(100), by varying the deposition rate between 0.1 and 10 nm/min, it is possible to observe a transition from island growth mode, with large and isolated crystallites, to homogeneous film growth. These findings contribute to the basic knowledge for film engineering. Thus, the film morphology could be designed ranging from the growth of very large single grains suitable for a complete nanodevice to homogenous films for application in large displays.

4.
J Chem Phys ; 129(7): 074702, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19044787

RESUMO

We present a high-resolution photoelectron spectroscopy investigation of condensed films of benzene, naphthalene, anthracene, tetracene, and pentacene. High spectroscopic resolution and a systematic variation of the molecular size allow a detailed analysis of the fine structures. The line shapes of the C 1s main lines are analyzed with respect to the different contributions of inhomogeneous broadening, vibronic coupling, and chemical shifts. The shake-up satellite spectra reveal trends, which give insight into the charge redistribution within the molecule upon photoexcitation. In particular, the shake-up between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) increases in intensity and moves closer toward the C 1s main line if the size of the aromatic system is increased. An explanation is given on the basis of the delocalization of the aromatic system and its capability in screening the photogenerated core hole. A comparison of the HOMO-LUMO shake-up position to the optical band gap gives additional insight into the reorganization of the electronic system upon photoexcitation.

5.
Ultramicroscopy ; 126: 23-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23376403

RESUMO

The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed.

6.
J Phys Condens Matter ; 25(31): 315501, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23835492

RESUMO

We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.


Assuntos
Berílio/química , Calcogênios/química , Teoria Quântica , Espectroscopia por Absorção de Raios X
8.
J Phys Chem B ; 116(46): 13757-64, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23106147

RESUMO

Resonant inelastic soft X-ray scattering (RIXS) has been used to study the electronic structure of glycine and lysine in aqueous solution. Upon variation of the pH value of the solution from acidic to basic, major changes of the nitrogen K edge RIXS data are observed for both amino acids, which are associated with the protonation and deprotonation of the amino groups. The experimental results are compared with simulations based on density functional theory, yielding a detailed understanding of the spectral changes, as well as insights into the ultrafast proton dynamics in the intermediate core-excited/ionized state of the RIXS process.


Assuntos
Glicina/química , Lisina/química , Prótons , Teoria Quântica , Água/química , Concentração de Íons de Hidrogênio , Espalhamento de Radiação , Raios X
9.
Science ; 329(5989): 303-5, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20647462

RESUMO

Inverse melting or disordering, in which the disordered phase forms upon cooling, is known for a few cases in bulk systems under high pressure. We show that inverse disordering also occurs in two dimensions: For a monolayer of 1,4,5,8-naphthalene-tetracarboxylic dianhydride on Ag(111), a completely reversible order-disorder transition appears upon cooling. The transition is driven by strongly anisotropic interactions within the layer versus with the metal substrate. Spectroscopic data reveal changes in the electronic structure of the system corresponding to a strengthening of the interface bonding at low temperatures. We demonstrate that the delicate, temperature-dependent balance between the vertical and lateral forces is the key to understanding this unconventional phase transition.

10.
Ultramicroscopy ; 110(11): 1358-61, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20692099

RESUMO

The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(111) surface.

12.
Phys Rev Lett ; 55(27): 2979-2982, 1985 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-10032291
14.
Phys Rev B Condens Matter ; 45(7): 3868-3869, 1992 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10001985
15.
Phys Rev B Condens Matter ; 39(6): 3720-3734, 1989 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9948694
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA