RESUMO
The origin of methylmercury in pelagic fish remains unclear, with many unanswered questions regarding the production and degradation of this neurotoxin in the water column. We used mercury (Hg) stable isotope ratios of marine particles and biota to elucidate the cycling of methylmercury prior to incorporation into the marine food web. The Hg isotopic composition of particles, zooplankton, and fish reveals preferential methylation of Hg within small (< 53 µm) marine particles in the upper 400 m of the North Pacific Ocean. Mass-dependent Hg isotope ratios (δ202Hg) recorded in small particles overlap with previously estimated δ202Hg values for methylmercury sources to Pacific and Atlantic Ocean food webs. Particulate compound specific isotope analysis of amino acids (CSIA-AA) yield δ15N values that indicate more-significant microbial decomposition in small particles compared to larger particles. CSIA-AA and Hg isotope data also suggest that large particles (> 53 µm) collected in the equatorial ocean are distinct from small particles and resemble fecal pellets. Additional evidence for Hg methylation within small particles is provided by a statistical mixing model of even mass-independent (Δ200Hg and Δ204Hg) isotope values, which demonstrates that Hg within near-surface marine organisms (0-150 m) originates from a combination of rainfall and marine particles. In contrast, in meso- and upper bathypelagic organisms (200-1,400 m), the majority of Hg originates from marine particles with little input from wet deposition. The occurrence of methylation within marine particles is supported further by a correlation between Δ200Hg and Δ199Hg values, demonstrating greater overlap in the Hg isotopic composition of marine organisms with marine particles than with total gaseous Hg or wet deposition.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Isótopos de Mercúrio/análise , Mercúrio/análise , Organismos Aquáticos/metabolismo , Neurotoxinas/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes/metabolismo , Isótopos/metabolismo , Água/metabolismo , Aminoácidos/metabolismoRESUMO
Water column bulk Pseudo-nitzschia abundance and the dissolved and particulate domoic acid (DA) concentrations were measured in the Santa Barbara Basin (SBB), California from 2009â»2013 and compared to bulk Pseudo-nitzschia cell abundance and DA concentrations and fluxes in sediment traps moored at 147 m and 509 m. Pseudo-nitzschia abundance throughout the study period was spatially and temporally heterogeneous (<200 cells L-1 to 3.8 × 106 cells L-1, avg. 2 × 105 ± 5 × 105 cells L-1) and did not correspond with upwelling conditions or the total DA (tDA) concentration, which was also spatially and temporally diverse (<1.3 ng L-1 to 2.2 × 105 ng L-1, avg. 7.8 × 10³ ± 2.2 × 104 ng L-1). We hypothesize that the toxicity is likely driven in part by specific Pseudo-nitzschia species as well as bloom stage. Dissolved (dDA) and particulate (pDA) DA were significantly and positively correlated (p < 0.01) and both comprised major components of the total DA pool (pDA = 57 ± 35%, and dDA = 42 ± 35%) with substantial water column concentrations (>1000 cells L-1 and tDA = 200 ng L-1) measured as deep as 150 m. Our results highlight that dDA should not be ignored when examining bloom toxicity. Although water column abundance and pDA concentrations were poorly correlated with sediment trap Pseudo-nitzschia abundance and fluxes, DA toxicity is likely associated with senescent blooms that rapidly sink to the seafloor, adding another potential source of DA to benthic organisms.