Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1990): 20222181, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629105

RESUMO

The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.


Assuntos
Ecossistema , Insetos , Animais , Mudança Climática , Estações do Ano , Temperatura , Aves , Mamíferos
2.
Oecologia ; 193(2): 261-271, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32281030

RESUMO

For some animals, the habitat which they first experience can influence the type of habitat which they select later in life and, thus, potentially their population distribution and dynamics. However, for many insect herbivores, whose natal habitat may consist of a single hostplant, the consequences of natal hostplant experience remain untested in landscapes relevant to the adult, which may select not only among plants, but among plant patches. As a first step towards understanding how natal hostplant experience shapes patterns of insect feeding damage in landscapes relevant to adults, we conducted partially caged field experiments with diamondback moths that were reared on either mustard or collard plants and then allowed to choose among and within patches of plants that varied in plant density and composition. We predicted that natal hostplant experience would interact with patch size and composition to influence the number of diamondback moth offspring and feeding damage per plant. As predicted, when moths were reared on collards, we found more offspring on and damage to collard plants in four-collard patches than in two-collard patches (i.e., resource concentration), but no difference when moths were reared on mustards. Contrary to predictions, we found no difference in the number of offspring on or damage to mixed plant patches compared with two- or four-collard plant patches regardless of natal hostplant type. Our research suggests that prior hostplant experience has complex consequences for how insects and their feeding damage are distributed in patchy environments and highlights the need for future research in this area.


Assuntos
Mariposas , Animais , Ecossistema , Herbivoria , Larva , Mostardeira
3.
Ecol Lett ; 20(12): 1507-1515, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124863

RESUMO

Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change.


Assuntos
Abelhas , Mudança Climática , Ecossistema , Animais , Reprodução , Especificidade da Espécie
4.
Ecology ; 98(11): 2904-2913, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869769

RESUMO

An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e., resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e., frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and our use of them in applications such as mixed-crop pest management.


Assuntos
Ecossistema , Animais , Besouros , Fabaceae , Modelos Teóricos , Densidade Demográfica
5.
J Anim Ecol ; 86(5): 1065-1073, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28481414

RESUMO

Disturbances are widespread in nature and can have substantial population-level consequences. Most empirical studies on the effects of disturbance track population recovery within habitat patches, but have an incomplete representation of the recolonization process. In addition, recent metapopulation models represent post-disturbance colonization with a recovery state or time-lag for disturbed ("focal") patches, thus assuming that recolonization rates are uniform. However, the availability of colonists in neighbouring "source" patches can vary, especially in frequently disturbed landscapes such as fire-managed forests that have a mosaic of patches that differ in successional state and undergo frequent local extinctions. To determine how time since disturbance in both focal and neighbouring source patches might affect metapopulations, we studied the effects of time since fire (TSF) on abundances of a specialist palmetto beetle within and between fire management units in Apalachicola National Forest, Florida. We measured beetle abundances at three distances from the shared edge of paired units, with units ranging from 0 to 64 months since fire and the difference in time since burning for a focal-source pair ranging from 3 to 58 months. Soon after fire, beetle abundances within management units were highest near the unit edge, but this pattern changed with increasing TSF. Between paired units, the more recently disturbed ("focal") unit's beetle abundance was positively related to source unit abundance, but the shape of this relationship differed based on focal unit TSF and the units' difference in time since burning. Results suggest that both focal and source habitat history can influence recolonization of recently disturbed patches and that these effects may persist over years. Thus, when predicting metapopulation dynamics, variation in habitat characteristics should be considered not only for patches receiving colonists but for patches supplying colonists as well.


Assuntos
Besouros , Ecossistema , Incêndios , Animais , Florida , Dinâmica Populacional
6.
Ecol Lett ; 18(2): 164-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25534277

RESUMO

Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non-intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear-damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths.


Assuntos
Formigas/fisiologia , Cadeia Alimentar , Ursidae/fisiologia , Animais , Artrópodes/fisiologia , Herbivoria , Dinâmica Populacional , Comportamento Predatório
7.
Ecology ; 96(5): 1431-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236855

RESUMO

Neighboring plants can affect the likelihood that a focal plant is attacked by herbivores. Both the density of conspecific neighbors (resource concentration or dilution effects) and the relative density of heterospecific neighbors (associational effects or effects of neighbor frequency) within the local neighborhood can affect herbivore load and plant damage. Understanding how these neighborhood effects influence processes such as plant competition or natural selection on plant resistance traits will require knowing how both plant density and frequency affect damage, but previous studies have generally confounded density and frequency effects. In this study, we independently manipulated the absolute density and frequency (i.e., relative density) of two plant species (Solanum carolinense and Solidago altissima) to characterize neighborhood composition effects on S. carolinense damage by herbivores, providing the first picture of how both density and frequency of neighbors influence damage in a single system. We found both a positive effect of S. carolinense density on S. carolinense damage (a resource concentration effect) and a nonlinear effect of S. altissima frequency on S. carolinense damage (associational susceptibility). If these types of patterns are common in nature, future studies seeking to understand neighborhood effects on damage need to incorporate both density and frequency effects and capture any nonlinear effects by selecting a range of values rather than focusing on only a pair of densities or frequencies. This type of data on neighborhood effects will allow us to understand the contribution of neighborhood effects to population-level processes such as competition, the evolution of plant resistance to herbivores, and yield gains in agricultural crop mixtures.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Solanum/fisiologia , Solidago/fisiologia , Animais , Folhas de Planta , Densidade Demográfica
8.
Ecology ; 96(10): 2758-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649396

RESUMO

Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all models examined, where patterns manifested as wave-like aggregations of herbivores and variation in induction levels. Patterns arose when herbivores moved away from highly induced plants, there was a lag between damage and deployment of induced resistance, and the relationship between herbivore density and strength of the induction response had a sigmoid shape. These mechanisms influenced pattern formation regardless of the assumed functional relationship between resistance and herbivore recruitment and mortality. However, in models where induction affected herbivore mortality, large-scale herbivore population cycles driven by the mortality response often co-occurred with smaller scale spatial patterns driven by herbivore movement. When the mortality effect dominated, however, spatial pattern formation was completely replaced by spatially synchronized herbivore population cycles. Our results present a new type of ecological pattern formation driven by induced trait variation, consumer behavior, and time delays that has broad implications for the community and evolutionary ecology of plant defenses.


Assuntos
Herbivoria , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Animais
9.
Ecology ; 95(5): 1370-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000768

RESUMO

Effects of neighboring plants on herbivore damage to a focal plant (associational effects) have been documented in many systems and can lead to either increased or decreased herbivore attack. Mechanistic models that explain the observed variety of herbivore responses to local plant community composition have, however, been lacking. We present a model of herbivore responses to patches that consist of two plant types, where herbivore densities on a focal plant are determined by a combination of patch-finding, within-patch redistribution, and patch-leaving. Our analyses show that the effect of plant neighborhood on herbivores depends both on how plant and herbivore traits combine to affect herbivore movement and on how experimental designs reveal the effects of plant density and plant relative frequency. Associational susceptibility should be the dominant pattern when herbivores have biased landing rates within patches. Other behavioral decision rules lead to mixed responses, but a common pattern is that in mixed patches, one plant type experiences associational resistance while the other plant experiences associational susceptibility. In some cases, the associational effect may shift sign along a gradient of plant frequency, suggesting that future empirical studies should include more than two plant frequencies to detect nonlinearities. Finally, we find that associational susceptibility should be commonly observed in experiments using replacement designs, whereas associational resistance will be the dominant pattern when using additive designs. Consequently, outcomes from one experimental design cannot be directly compared to studies with other designs. Our model can also be translated to other systems with foragers searching for multiple resource types.


Assuntos
Herbivoria/fisiologia , Plantas/classificação , Animais , Modelos Biológicos , Dinâmica Populacional
10.
Ecology ; 94(8): 1753-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24015519

RESUMO

Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Solanum/fisiologia , Solidago/fisiologia , Animais , Carbaril/farmacologia , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Modelos Biológicos , Especificidade da Espécie
11.
Oecologia ; 173(2): 473-82, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23456243

RESUMO

Perennial plants interact with herbivores and pollinators across multiple growing seasons, and thus may respond to herbivores and pollinators both within and across years. Joint effects of herbivores and pollinators influence plant traits, but while some of the potential interactions among herbivory, pollination, plant size, and plant reproductive traits have been well studied, others are poorly understood. This is particularly true for perennial plants where effects of herbivores and pollinators may manifest across years. Here, we describe two experiments addressing the reciprocal interactions of plant traits with herbivore damage and pollination across 2 years using the perennial plant Chamerion angustifolium. We measured (1) plant responses to manipulation of damage and pollination in the year of treatment and the subsequent season, (2) damage and pollination responses to manipulation of plant size and flowering traits in the year of treatment, and (3) plant-mediated indirect interactions between herbivores and pollinators. We found that plant traits had little effect on damage and pollination, but damage and pollination affected plant traits in both the treatment year and the subsequent year. We found evidence of indirect effects between leaf herbivores and pollinators in both directions; indirect effects of pollinators on leaf herbivores have not been previously demonstrated. Our results indicate that pollen receipt results in shorter plants with fewer stems but does not change flower number, while leaf herbivory results in taller plants with fewer flowers. Together, herbivory and pollination may contribute to intermediate plant height and plants with fewer stems and flowers in our system.


Assuntos
Herbivoria , Insetos/fisiologia , Onagraceae/anatomia & histologia , Onagraceae/fisiologia , Polinização , Animais , Colorado , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Onagraceae/crescimento & desenvolvimento , Reprodução , Estações do Ano
12.
Ecology ; 104(11): e4153, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37610797

RESUMO

The Rocky Mountain Biological Laboratory (RMBL; Colorado, USA) is the site for many research projects spanning decades, taxa, and research fields from ecology to evolutionary biology to hydrology and beyond. Climate is the focus of much of this work and provides important context for the rest. There are five major sources of data on climate in the RMBL vicinity, each with unique variables, formats, and temporal coverage. These data sources include (1) RMBL resident billy barr, (2) the National Oceanic and Atmospheric Administration (NOAA), (3) the United States Geological Survey (USGS), (4) the United States Department of Agriculture (USDA), and (5) Oregon State University's PRISM Climate Group. Both the NOAA and the USGS have automated meteorological stations in Crested Butte, CO, ~10 km from the RMBL, while the USDA has an automated meteorological station on Snodgrass Mountain, ~2.5 km from the RMBL. Each of these data sets has unique spatial and temporal coverage and formats. Despite the wealth of work on climate-related questions using data from the RMBL, previous researchers have each had to access and format their own climate records, make decisions about handling missing data, and recreate data summaries. Here we provide a single curated climate data set of daily observations covering the years 1975-2022 that blends information from all five sources and includes annotated scripts documenting decisions for handling data. These synthesized climate data will facilitate future research, reduce duplication of effort, and increase our ability to compare results across studies. The data set includes information on precipitation (water and snow), snowmelt date, temperature, wind speed, soil moisture and temperature, and stream flows, all publicly available from a combination of sources. In addition to the formatted raw data, we provide several new variables that are commonly used in ecological analyses, including growing degree days, growing season length, a cold severity index, hard frost days, an index of El Niño-Southern Oscillation, and aridity (standardized precipitation evapotranspiration index). These new variables are calculated from the daily weather records. As appropriate, data are also presented as minima, maxima, means, residuals, and cumulative measures for various time scales including days, months, seasons, and years. The RMBL is a global research hub. Scientists on site at the RMBL come from many countries and produce about 50 peer-reviewed publications each year. Researchers from around the world also routinely use data from the RMBL for synthetic work, and educators around the United States use data from the RMBL for teaching modules. This curated and combined data set will be useful to a wide audience. Along with the synthesized combined data set we include the raw data and the R code for cleaning the raw data and creating the monthly and yearly data sets, which facilitate adding additional years or data using the same standardized protocols. No copyright or proprietary restrictions are associated with using this data set; please cite this data paper when the data are used in publications or scientific events.


Assuntos
Neve , Tempo (Meteorologia) , Humanos , Estações do Ano , Temperatura , El Niño Oscilação Sul
13.
Ecology ; 104(1): e3890, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208124

RESUMO

Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co-occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community. We compare skewness in bees to that in flowers, relate bee and flower skewness to other properties of their phenology, and quantify the potential consequences of differences in skewness between bees and flowers. Both bee and flower phenologies tend to be right-skewed, with a more exaggerated asymmetry in bees. Early-season species tend to be the most skewed, and this relationship is also stronger in bees than in flowers. Based on a simulation experiment, differences in bee and flower skewness could account for up to 14% of pairwise overlap differences. Given the potential for interaction loss, we argue that difference in skewness of interacting species is an underappreciated property of phenological change.


Assuntos
Distribuição Animal , Abelhas , Flores , Dispersão Vegetal , Polinização , Animais , Abelhas/fisiologia , Estações do Ano , Dispersão Vegetal/fisiologia
14.
Ecology ; 93(5): 1026-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22764489

RESUMO

How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.


Assuntos
Herbivoria , Insetos/fisiologia , Solanum/fisiologia , Animais , Ecossistema , Densidade Demográfica
15.
J Anim Ecol ; 81(2): 494-502, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22098489

RESUMO

1. In ecological webs, net indirect interactions between species are composed of interactions that vary in sign and magnitude. Most studies have focused on negative component interactions (e.g. predation, herbivory) without considering the relative importance of positive interactions (e.g. mutualism, facilitation) for determining net indirect effects. 2. In plant/arthropod communities, ants have multiple top-down effects via mutualisms with honeydew-producing herbivores and harassment of and predation on other herbivores; these ant effects provide opportunities for testing the relative importance of positive and negative interspecific interactions. We manipulated the presence of ants, honeydew-producing membracids and leaf-chewing beetles on perennial host plants in field experiments in Colorado to quantify the relative strength of these different types of interactions and their impact on the ant's net indirect effect on plants. 3. In 2007, we demonstrated that ants simultaneously had a positive effect on membracids and a negative effect on beetles, resulting in less beetle damage on plants hosting the mutualism. 4. In 2008, we used structural equation modelling to describe interaction strengths through the entire insect herbivore community on plants with and without ants. The ant's mutualism with membracids was the sole strong interaction contributing to the net indirect effect of ants on plants. Predation, herbivory and facilitation were weak, and the net effect of ants reduced plant reproduction. This net indirect effect was also partially because of behavioural changes of herbivores in the presence of ants. An additional membracid manipulation showed that the membracid's effect on ant activity was largely responsible for the ant's net effect on plants; ant workers were nearly ten times as abundant on plants with mutualists, and effects on other herbivores were similar to those in the ant manipulation experiment. 5. These results demonstrate that mutualisms can be strong relative to negative direct interspecific interactions and that positive interactions deserve attention as important components of ecological webs.


Assuntos
Formigas/fisiologia , Asteraceae/fisiologia , Besouros/fisiologia , Hemípteros/fisiologia , Simbiose , Animais , Comportamento Animal , Colorado , Cadeia Alimentar , Estações do Ano
16.
Oecologia ; 170(4): 1033-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22684886

RESUMO

Tolerance to herbivory (the degree to which plants maintain fitness after damage) is a key component of plant defense, so understanding how natural selection and evolutionary constraints act on tolerance traits is important to general theories of plant-herbivore interactions. These factors may be affected by plant competition, which often interacts with damage to influence trait expression and fitness. However, few studies have manipulated competitor density to examine the evolutionary effects of competition on tolerance. In this study, we tested whether intraspecific competition affects four aspects of the evolution of tolerance to herbivory in the perennial plant Solanum carolinense: phenotypic expression, expression of genetic variation, the adaptive value of tolerance, and costs of tolerance. We manipulated insect damage and intraspecific competition for clonal lines of S. carolinense in a greenhouse experiment, and measured tolerance in terms of sexual and asexual fitness components. Compared to plants growing at low density, plants growing at high density had greater expression of and genetic variation in tolerance, and experienced greater fitness benefits from tolerance when damaged. Tolerance was not costly for plants growing at either density, and only plants growing at low density benefited from tolerance when undamaged, perhaps due to greater intrinsic growth rates of more tolerant genotypes. These results suggest that competition is likely to facilitate the evolution of tolerance in S. carolinense, and perhaps in other plants that regularly experience competition, while spatio-temporal variation in density may maintain genetic variation in tolerance.


Assuntos
Evolução Biológica , Herbivoria , Solanum/fisiologia , Adaptação Fisiológica , Animais , Insetos , Fenótipo , Densidade Demográfica , Seleção Genética , Solanum/genética
17.
Ecology ; 101(10): e03118, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531072

RESUMO

Effects of group size (local conspecific density) on individual performance can be substantial, yet it is unclear how these translate to larger-scale and longer-term outcomes. Effects of group size can be mediated by both top-down and bottom-up interactions, can change in type or direction across the life cycle, and can depend on the spatial scale at which group size is assessed. Only by determining how these different processes combine can we make predictions about how selection operates on group size or link hierarchical patterns of density dependence with population dynamics. We manipulated the density of a leaf beetle, Leptinotarsa juncta, at three nested spatial scales (patch, plant within a patch, and leaf within plant) to investigate how conspecific density affects predator-mediated survival and resource-mediated growth during different life stages and across multiple spatial scales. We then used data from field predation experiments to assess how L. juncta densities at hierarchical scales affect different aspects of predation. Finally, we incorporated predator- and resource-mediated effects of density in a model to explore how changes in group size due to density-dependent predation might affect mass at pupation for survivors. The effects of L. juncta density on predation risk differed among scales. Per capita predation risk of both eggs and late instars was lowest at high patch-scale densities, but increased with plant-scale density. The final mass of late instars declined with increasing plant-scale larval density, potentially because of truncated development of high-density larvae. Predation incidence (i.e., group attack rate) increased with larval density at all spatial scales. A high coefficient of variation (i.e., greater aggregation) of L. juncta density was associated with lower predation incidence at some scales. Our model suggested that predator- and resource-mediated effects of density interact: lower survival at high larval density is mitigated by high final mass of larvae in the resulting smaller groups. Our results emphasize the importance of spatial scale and demonstrate that effects of top-down and bottom-up interactions are not necessarily independent. To understand how group size influences fitness, predator- and resource-mediated effects of density should be measured in their demographic and spatial context, and not in isolation.


Assuntos
Besouros , Comportamento Predatório , Animais , Larva , Estágios do Ciclo de Vida , Dinâmica Populacional
18.
J Anim Ecol ; 78(4): 839-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19486383

RESUMO

1. Species diversity can affect many ecological processes; much less is known about the importance of population genetic diversity, particularly for the population dynamics of associated species. Genetic diversity within a host species can create habitat diversity; when associated species move among hosts, this variation could affect populations additively (an effect of average habitat) or non-additively (an effect of habitat variance). Mathematical theory suggests that non-additive effects of variance among patches should influence population size, but this theory has not been tested. 2. This prediction was tested in the field by asking whether aphid population dynamics parameters on strawberry plant genotype mixtures were additive or non-additive functions of parameters on individual plant genotypes in monoculture using model fitting. 3. Results show that variance in quality among plant genotypes can have non-additive effects on aphid populations, and that the form of this effect depends on the particular plant genotypes involved. 4. Genetic variation among plants also influenced the spatial distribution of aphids within plant populations, but the number of plant genotypes per population did not affect aphid populations. 5. These results suggest that predicting the behaviour of populations in heterogeneous environments can require knowledge of both average habitat quality and variance in quality.


Assuntos
Afídeos/fisiologia , Comportamento Alimentar/fisiologia , Fragaria/genética , Variação Genética , Animais , Controle Biológico de Vetores , Dinâmica Populacional
19.
Ecol Lett ; 11(6): 609-23, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400018

RESUMO

Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.


Assuntos
Evolução Biológica , Ecologia/métodos , Ecossistema , Variação Genética , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
20.
Am Nat ; 169(1): 136-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17206592

RESUMO

Intrinsic population growth rate and density dependence are fundamental components of population dynamics. Theory suggests that variation in and correlations between these parameters among patches within a population can influence overall population size, but data on the degree of variation and correlation are rare. Replicate populations of a specialist aphid (Chaetosiphon fragaefolii) were followed on 11 genotypes of host plant (Fragaria chiloensis) in the greenhouse. Population models fit to these census data provide estimates of intrinsic growth rate and carrying capacity for aphid populations on each plant genotype. Growth rate and carrying capacity varied substantially among plant genotypes, and these two parameters were not significantly correlated. These results support the existence of spatial variation in population dynamic parameters; data on frequency distributions and correlations of these parameters in natural populations are needed for evaluation of the importance of variation in growth rate and density dependence for population dynamics in the field.


Assuntos
Afídeos/fisiologia , Fragaria/fisiologia , Animais , Ecossistema , Feminino , Genótipo , Densidade Demográfica , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA