Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569661

RESUMO

ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer's disease by reducing ß-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable side effects such as cognitive worsening. The latter could have been the result of the inhibition of BACE at the synapse where it is expressed in high amounts. We have previously shown that prolonged inhibition of BACE interferes with structural synaptic plasticity, most likely due to the diminished processing of the physiological BACE substrate Seizure protein 6 (Sez6) which is exclusively processed by BACE1 and is required for dendritic spine plasticity. Given that BACE1 has significant amino acid similarity with its homolog BACE2, the inhibition of BACE2 may cause some of the side effects, as most BACE inhibitors do not discriminate between the two. In this study, we used newly developed BACE inhibitors that have a different chemotype from previously developed inhibitors and a high selectivity for BACE1 over BACE2. By using longitudinal in vivo two-photon microscopy, we investigated the effect on dendritic spine dynamics of pyramidal layer V neurons in the somatosensory cortex in mice treated with highly selective BACE1 inhibitors. Treatment with those inhibitors showed a reduction in soluble Sez6 (sSez6) levels to 27% (elenbecestat, Biogen, Eisai Co., Ltd., Tokyo, Japan), 17% (Shionogi compound 1) and 39% (Shionogi compound 2), compared to animals fed with vehicle pellets. We observed a significant decrease in the number of dendritic spines with Shionogi compound 1 after 21 days of treatment but not with Shionogi compound 2 or with elenbecestat, which did not show cognitive worsening in clinical trials. In conclusion, highly selective BACE1 inhibitors do alter dendritic spine density similar to non-selective inhibitors if soluble (sSez6) levels drop too much. Low-dose BACE1 inhibition might be reasonable if dosing is carefully adjusted to the amount of Sez6 cleavage, which can be easily monitored during the first week of treatment.


Assuntos
Doença de Alzheimer , Ácido Aspártico Endopeptidases , Animais , Camundongos , Ácido Aspártico Endopeptidases/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Espinhas Dendríticas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Psychopharmacology (Berl) ; 241(4): 805-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114603

RESUMO

RATIONALE: Phosphodiesterase 4D negative allosteric modulators (PDE4D NAMs) enhance memory and cognitive function in animal models without emetic-like side effects. However, the relationship between increased cyclic adenosine monophosphate (cAMP) signaling and the effects of PDE4D NAM remains elusive. OBJECTIVE: To investigate the roles of hippocampal cAMP metabolism and synaptic activation in the effects of D159687, a PDE4D NAM, under baseline and learning-stimulated conditions. RESULTS: At 3 mg/kg, D159687 enhanced memory formation and consolidation in contextual fear conditioning; however, neither lower (0.3 mg/kg) nor higher (30 mg/kg) doses induced memory-enhancing effects. A biphasic (bell-shaped) dose-response effect was also observed in a scopolamine-induced model of amnesia in the Y-maze, whereas D159687 dose-dependently caused an emetic-like effect in the xylazine/ketamine anesthesia test. At 3 mg/kg, D159687 increased cAMP levels in the hippocampal CA1 region after conditioning in the fear conditioning test, but not in the home-cage or conditioning cage (i.e., context only). By contrast, 30 mg/kg of D159687 increased hippocampal cAMP levels under all conditions. Although both 3 and 30 mg/kg of D159687 upregulated learning-induced Fos expression in the hippocampal CA1 30 min after conditioning, 3 mg/kg, but not 30 mg/kg, of D159687 induced phosphorylation of synaptic plasticity-related proteins such as cAMP-responsive element-binding protein, synaptosomal-associated protein 25 kDa, and the N-methyl-D-aspartate receptor subunit NR2A. CONCLUSIONS: Our findings suggest that learning-stimulated conditions can alter the effects of a PDE4D NAM on hippocampal cAMP levels and imply that a PDE4D NAM exerts biphasic memory-enhancing effects associated with synaptic plasticity-related signaling activation.


Assuntos
Compostos Benzidrílicos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Compostos de Fenilureia , Inibidores da Fosfodiesterase 4 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Eméticos/metabolismo , Eméticos/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Transdução de Sinais , Hipocampo
3.
J Med Chem ; 61(12): 5122-5137, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29733614

RESUMO

Accumulation of Aß peptides is a hallmark of Alzheimer's disease (AD) and is considered a causal factor in the pathogenesis of AD. ß-Secretase (BACE1) is a key enzyme responsible for producing Aß peptides, and thus agents that inhibit BACE1 should be beneficial for disease-modifying treatment of AD. Here we describe the discovery and optimization of novel oxazine-based BACE1 inhibitors by lowering amidine basicity with the incorporation of a double bond to improve brain penetration. Starting from a 1,3-dihydrooxazine lead 6 identified by a hit-to-lead SAR following HTS, we adopted a p Ka lowering strategy to reduce the P-gp efflux and the high hERG potential leading to the discovery of 15 that produced significant Aß reduction with long duration in pharmacodynamic models and exhibited wide safety margins in cardiovascular safety models. This compound improved the brain-to-plasma ratio relative to 6 by reducing P-gp recognition, which was demonstrated by a P-gp knockout mouse model.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Oxazinas/química , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Animais , Ácido Aspártico Endopeptidases/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cristalografia por Raios X , Cães , Desenho de Fármacos , Canal de Potássio ERG1/metabolismo , Cobaias , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxazinas/farmacologia , Inibidores de Proteases/farmacocinética , Relação Estrutura-Atividade
4.
J Med Chem ; 61(13): 5525-5546, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29775538

RESUMO

ß-Secretase (BACE1) has an essential role in the production of amyloid ß peptides that accumulate in patients with Alzheimer's disease (AD). Thus, inhibition of BACE1 is considered to be a disease-modifying approach for the treatment of AD. Our hit-to-lead efforts led to a cellular potent 1,3-dihydro-oxazine 6, which however inhibited hERG and showed high P-gp efflux. The close analogue of 5-fluoro-oxazine 8 reduced P-gp efflux; further introduction of electron withdrawing groups at the 6-position improved potency and also mitigated P-gp efflux and hERG inhibition. Changing to a pyrazine followed by optimization of substituents on both the oxazine and the pyrazine culminated in 24 with robust Aß reduction in vivo at low doses as well as reduced CYP2D6 inhibition. On the basis of the X-ray analysis and the QM calculation of given dihydro-oxazines, we reasoned that the substituents at the 6-position as well as the 5-fluorine on the oxazine would stabilize a bioactive conformation to increase potency.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxazinas/química , Oxazinas/farmacologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Simulação de Acoplamento Molecular , Oxazinas/metabolismo , Oxazinas/farmacocinética , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA