Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Model ; 29(8): 234, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414998

RESUMO

CONTEXT: The evaluation of ionic conductivity through atomistic modeling typically involves calculating diffusion coefficients, which often necessitates simulations spanning several hundreds of nanoseconds. This study introduces a less computationally demanding approach based on non-equilibrium molecular dynamics applicable to a wide range of systems. METHOD: Ionic conductivity is determined by evaluating the Joule heating effect recorded during non-equilibrium molecular dynamics (NEMD) simulations. These simulations which involve applying a uniform electric field using classical force fields in LAMMPS are conducted within the MedeA software environment. The conductivity value for a specific temperature can thus be obtained from a single simulation together with an estimation of the associated uncertainty. Guidelines for selecting NEMD parameters such as electric field intensity and initial temperature are proposed to satisfy linear irreversible transport. RESULTS: The protocol presented in this study is applied to four different types of systems, namely, (i) molten NaCl, (ii) NaCl and LiCl aqueous solutions, (iii) solution of ionic liquid with two solvents, and (iv) NaX zeolites in the anhydrous and hydrated states. The main advantages of the proposed protocol are simplicity of implementation (eliminating the need to store individual ion trajectories), reliability (low electric field, linear response, no perturbation of the equations of motion by a thermostat), and a wide range of applications. The estimated contribution of field-induced drift motion of ions to kinetic energy appears very low, justifying the use of standard kinetic energy in the method. For each system, the reported influence of temperature, ion concentration, solvent nature, or hydration is correctly predicted.


Assuntos
Simulação de Dinâmica Molecular , Cloreto de Sódio , Calefação , Reprodutibilidade dos Testes , Íons , Solventes
3.
J Phys Chem B ; 112(49): 15783-92, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19367990

RESUMO

The thermodynamic behavior of the carbon dioxide + nitrogen dioxide (CO2 + NO2) mixture was investigated using a Monte Carlo molecular simulation approach. This system is a particularly challenging one because nitrogen dioxide exists as a mixture of monomers (NO2) and dimers (N2O4) under certain pressure and temperature conditions. The chemical equilibrium between N2O4 and 2NO2 and the vapor-liquid equilibrium of CO2 + NO2/N2O4 mixtures were simulated using simultaneously the reaction ensemble and the Gibbs ensemble Monte Carlo (RxMC and GEMC) methods. Rigid all atoms molecular potentials bearing point charges were proposed to model both NO2 and N2O4 species. Liquid-vapor coexistence properties of the reacting NO2/N2O4 system were first investigated. The calculated vapor pressures and coexisting densities were compared to experimental values, leading to an average deviation of 10% for vapor pressures and 6% for liquid densities. The critical region was also addressed successfully using the subcritical Monte Carlo simulation results and some appropriate scaling laws. Predictions of CO2 + NO2/N2O4 phase diagrams at 300, 313, and 330 K were then proposed. Derivative properties calculations were also performed in the reaction ensemble at constant pressure and temperature for both NO2/N2O4 and CO2 + NO2/N2O4 systems. The calculated heat capacities show a maximum in the temperature range where N2O4 dissociation occurs, in agreement with available experimental data.

4.
J Phys Chem B ; 112(32): 9853-63, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18646801

RESUMO

An anisotropic united-atom (AUA4) intermolecular potential has been derived for the family of alkanols by first optimizing a set of charges to reproduce the electrostatic potential of the isolated molecules of methanol and ethanol and then by adjusting the parameters of the OH group to fit selected equilibrium properties. In particular, the proposed potential includes additional extra-atomic charges in order to improve the matching to the electrostatic field. Gibbs ensemble Monte Carlo simulations were performed to determine the phase equilibria, while the critical region was explored by means of grand canonical Monte Carlo simulations combined with histogram reweighting techniques. In order to increase the transferability of the model, only the parameters of the Lennard-Jones OH group have been fitted, the parameters of the other AUA groups are taken from previous works. Nevertheless, a good level of agreement was obtained for all compounds considered in this work. In particular, excellent results were obtained for the Henry constants calculation of different gases in alkanols.


Assuntos
Álcoois/química , Anisotropia , Método de Monte Carlo , Eletricidade Estática , Termodinâmica
5.
J Phys Chem B ; 111(14): 3730-41, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17388536

RESUMO

An optimization including electrostatic interactions has been performed for the parameters of an anisotropic united atoms intermolecular potential for benzene for thermodynamic and transport property prediction using Gibbs ensemble, isothermal-isobaric (NPT) Monte Carlo, and molecular dynamic simulations. The optimization procedure is based on the minimization of a dimensionless error criterion incorporating various thermodynamic data (saturation pressure, vaporization enthalpy, and liquid density) at ambient conditions and at 350 and 450 K. A comprehensive comparison of the new model is given with other intermolecular potentials taken from the literature. Overall thermodynamic, structural, reorientational, and translational dynamic properties of our optimized model are in very good agreement with experimental data. The new model also provides a good representation of the liquid structure, as revealed by three-dimensional spatial density functions and carbon-carbon radial distribution function. Shear viscosity variations with temperature and pressure are very well reproduced, revealing a significant improvement with respect to nonpolar models.

6.
J Phys Chem B ; 111(17): 4460-6, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17408254

RESUMO

The optimization of the parameters of the Lennard-Jones (LJ) 12-6 potential of the sulfur atom in thiophene has allowed the AUA 4 potential to be successfully extended to alkyl and polythiophenes. Monte Carlo Gibbs ensemble and grand canonical simulations combined with histogram reweighting techniques have been performed to investigate the resulting phase equilibrium and the critical region of different molecules of this family in order to test the proposed potential. Excellent agreement with experimental densities, enthalpies of vaporization, and saturation pressures has been obtained in most of the cases. In particular, the critical point of our model for thiophene has been located with a statistical precision of less than 0.1% and is within 1% of the experimental value. The calculation of the critical points has been made through a recently implemented methodology based on the calculation of a fourth order cumulant (Binder parameter) combined with the use of finite size scaling methods, allowing the critical points to be located in a straightforward and accurate way.

7.
J Phys Chem B ; 110(24): 12083-8, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800520

RESUMO

A parallelized sampling version of the Gibbs Ensemble (Mol. Phys. 2000, 98, 1887) has been implemented to predict low-temperature vapor-liquid equilibria of 1- and 2-methylnaphthalene modeled by anisotropic united atom potentials. The simulation were performed at the low temperature of 364.2 K at which common direct simulation methods fail due to particle transfer problems. The simulation results are compared with published results obtained from the Gibbs-Duhem integration method and with experimental data. Both methods are compared and discussed in terms of computational efficiency and with respect to their future use at other thermodynamic conditions.

8.
J Phys Chem B ; 109(7): 2970-6, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851311

RESUMO

In this third article of the series, a new anisotropic united atoms (AUA) intermolecular potential parameter set has been proposed for the carbon force centers connecting the aromatic rings of polyaromatic hydrocarbons to predict thermodynamic properties using both the Gibbs ensemble and NPT Monte Carlo simulations. The model uses the same parameters as previous AUA models used for the aromatic CH force centers. The optimization procedure is based on the minimization of a dimensionless error criterion incorporating various thermodynamic data of naphthalene at 400 and 550 K. The new model has been evaluated on a series of polyaromatic and naphthenoaromatic hydrocarbons over a wide range of temperatures up to near-critical conditions. Vaporization enthalpy, liquid density, and normal boiling temperature are reproduced with good accuracy. The new potential parameters have also been tested successfully on toluene, 1,3,5-trimethylbenzene, styrene, m-xylene, n-hexylbenzene, and n-dodecylbenzene to demonstrate their transferability to alkylbenzenes.

9.
J Mol Model ; 14(7): 571-80, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18478282

RESUMO

An extension of the anisotropic united atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (-C[triple bound] N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile.


Assuntos
Modelos Moleculares , Nitrilas/química , Anisotropia , Simulação por Computador , Modelos Químicos , Conformação Molecular , Peso Molecular , Método de Monte Carlo , Eletricidade Estática , Termodinâmica , Volatilização
10.
J Chem Phys ; 125(4): 44517, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16942166

RESUMO

The parameters of the anisotropic united atom (AUA) intermolecular potential for n-alkanes originally proposed by Toxvaerd [J. Chem. Phys. 93, 4290 (1990)] [AUA(3)] was optimized by Ungerer et al. [J. Chem. Phys. 112, 5499 (2000)] [AUA(4)] on the basis of equilibrium properties (vapor pressures, vaporization enthalpies, and liquid densities). In this work we analyze the influence of the torsion potential in the internal and collective dynamics of the AUA model. The modified potential [AUA(4m)] preserves all the intermolecular parameters and only explores an increment in the trans-gauche and gauche(+)-gauche(-) transition barrier of the torsion potential. This modification better reproduce different transport properties (shear viscosity, self-diffusion coefficient, and internal relaxation times), keeping the accuracy achieved in our previous work for equilibrium properties. An extensive investigation of the shear viscosity of ethane, n-pentane, n-dodecane, and n-eicosane in a wide range of pressures and temperatures shows that the AUA(4m) improves the accuracy of the original AUA(4), reducing the absolute average deviation from 30% to 14.5%. Finally, the self-diffusion coefficient of n-hexane computed with the new model in the range of 223-333 K and from 0.1 to 295 MPa is in better agreement with respect to the experimental data than the original model.

11.
J Chem Phys ; 125(5): 054515, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16942234

RESUMO

The apparent critical point of the pure fluid and binary mixtures interacting with the Lennard-Jones potential has been calculated using Monte Carlo histogram reweighting techniques combined with either a fourth order cumulant calculation (Binder parameter) or a mixed-field study. By extrapolating these finite system size results through a finite size scaling analysis we estimate the infinite system size critical point. Excellent agreement is found between all methodologies as well as previous works, both for the pure fluid and the binary mixture studied. The combination of the proposed cumulant method with the use of finite size scaling is found to present advantages with respect to the mixed-field analysis since no matching to the Ising universal distribution is required while maintaining the same statistical efficiency. In addition, the accurate estimation of the finite critical point becomes straightforward while the scaling of density and composition is also possible and allows for the estimation of the line of critical points for a Lennard-Jones mixture.

12.
Phys Chem Chem Phys ; 8(46): 5396-406, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17119646

RESUMO

We report a series of Grand Canonical Monte Carlo simulations of water adsorption in NaY and NaX faujasite, as well as in silicalite-1. Computed adsorption isotherms and heats of adsorption were in good agreement with the available experiments. The existence of cyclic water hexamers in NaX located in the 12-ring windows, recently disclosed by neutron diffraction experiments (Hunger et al., J. Phys. Chem. B, 2006, 110, 342-353) was reproduced in our simulations. Interestingly enough, such cyclic hexamer clusters were also observed in the case of NaY, in which no stabilizing cation is present in the 12-ring window. We also report cation redistribution upon water adsorption for sodium faujasite with varying cation contents (Si ratio Al ratio in the range 1.53-3). A simple and transferable forcefield was used, that enabled to reproduce the different aspects of water physisorption in stable zeolites. The high pressure water condensation in hydrophobic silicalite-1 was reproduced without any parameter readjustment. The method and forcefield used here should be useful for engineering oriented applications such as the prediction of multi-component mixture adsorptive separations in various stable zeolites. It allows to address the issue of the effect of the small amounts of water that are almost inevitably present in zeolite-based separation processes.

13.
J Chem Phys ; 121(21): 10566-76, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15549940

RESUMO

We have employed an anisotropic united atom model of benzene (R. O. Contreras, Ph.D. thesis, Universitat Rovira i Virgili 2002) that reproduces the quadrupolar moment of this molecule through the inclusion of seven point charges. We show that this kind of interaction is required to reproduce the solvation of these molecules in supercritical water. We have computed self-diffusion coefficient and Maxwell-Stefan coefficients as well as the shear viscosity for the mixture water-benzene at supercritical conditions. A strong density and composition dependence of these properties is observed. In addition, our simulations are in qualitative agreement with the experimental evidence that, at medium densities (0.6 g/cm(3) and 673 K), almost half of the benzene molecules have one hydrogen bond with water molecules. We also observe that these bonds are longer lived than the corresponding hydrogen bonds between water molecules. Similarly, we obtain an important reduction of the dielectric constant of the mixture with the increment of the amount of benzene molecules at medium and high densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA