Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(23)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33168584

RESUMO

DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Endorreduplicação/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Citoesqueleto/genética , Replicação do DNA/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Miofibrilas/genética , Membrana Nuclear/genética , Matriz Nuclear/genética , Protamina Quinase/genética
2.
Biochem J ; 478(8): 1647-1661, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33821962

RESUMO

The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Proteína 7 com Repetições F-Box-WD/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/deficiência , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Ubiquitinação
3.
Biochem J ; 466(1): 105-14, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25423617

RESUMO

Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1Δ yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1Δ yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a ß-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1Δ yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription.


Assuntos
Regulação Fúngica da Expressão Gênica , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Subunidades Proteicas/genética , RNA Polimerase I/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Teste de Complementação Genética , Higromicina B/farmacologia , Fosfatos de Inositol/farmacologia , Paromomicina/farmacologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
4.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980273

RESUMO

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex transduces nuclear mechanical inputs suggested to control chromatin organization and gene expression; however, the underlying mechanism is currently unclear. We show here that the LINC complex is needed to minimize chromatin repression in muscle tissue, where the nuclei are exposed to significant mechanical inputs during muscle contraction. To this end, the genomic binding profiles of Polycomb, Heterochromatin Protein1 (HP1a) repressors, and of RNA-Pol II were studied in Drosophila larval muscles lacking functional LINC complex. A significant increase in the binding of Polycomb and parallel reduction of RNA-Pol-II binding to a set of muscle genes was observed. Consistently, enhanced tri-methylated H3K9 and H3K27 repressive modifications and reduced chromatin activation by H3K9 acetylation were found. Furthermore, larger tri-methylated H3K27me3 repressive clusters, and chromatin redistribution from the nuclear periphery towards nuclear center, were detected in live LINC mutant larval muscles. Computer simulation indicated that the observed dissociation of the chromatin from the nuclear envelope promotes growth of tri-methylated H3K27 repressive clusters. Thus, we suggest that by promoting chromatin-nuclear envelope binding, the LINC complex restricts the size of repressive H3K27 tri-methylated clusters, thereby limiting the binding of Polycomb transcription repressor, directing robust transcription in muscle fibers.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Cromatina/metabolismo , Simulação por Computador , Citoesqueleto/metabolismo , Fatores de Transcrição/metabolismo , Matriz Nuclear/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA/metabolismo
5.
Int J Cell Biol ; 2017: 8607532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445399

RESUMO

The nuclear envelope proteins, Nesprins, have been primarily studied during interphase where they function in maintaining nuclear shape, size, and positioning. We analyze here the function of Nesprin-2 in chromatin interactions in interphase and dividing cells. We characterize a region in the rod domain of Nesprin-2 that is predicted as SMC domain (aa 1436-1766). We show that this domain can interact with itself. It furthermore has the capacity to bind to SMC2 and SMC4, the core subunits of condensin. The interaction was observed during all phases of the cell cycle; it was particularly strong during S phase and persisted also during mitosis. Nesprin-2 knockdown did not affect condensin distribution; however we noticed significantly higher numbers of chromatin bridges in Nesprin-2 knockdown cells in anaphase. Thus, Nesprin-2 may have an impact on chromosomes which might be due to its interaction with condensins or to indirect mechanisms provided by its interactions at the nuclear envelope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA