Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Luminescence ; 38(7): 1102-1110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36577837

RESUMO

The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal-organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768557

RESUMO

Cancer is characterized by persistent cell proliferation driven by aberrant cell cycle regulation and stimulation of cyclin-dependent kinases (CDKs). A very intriguing and potential approach for the development of antitumor medicines is the suppression of CDKs that lead to induction of apoptosis and cell cycle arrest. The shift of the cell cycle from the G0/G1 phase to the S phase, which is characterized by active transcription and synthesis, depends on the development of the cyclin D-CDK4/6 complex. A precise balance between anticancer activity and general toxicity is demonstrated by CDK inhibitors, which can specifically block CDK4/6 and control the cell cycle by reducing the G1 to S phase transition. CDK4/6 inhibitors have recently been reported to exhibit significant cell growth inhibition via modulating the tumour microenvironment in cancerous cells. One significant new understanding is that these inhibitors serve important functions in the interaction among tumour cells and the host immune system in addition to being cytostatic. Herein, we discuss the biological significance of CDK4/6 inhibitors in cancer therapeutics, as well as their biological impact on T cells and other important immune cells. Furthermore, we explore the integration of preclinical findings of these pharmaceuticals' ability to enhance antitumor immunity.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/imunologia , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Microambiente Tumoral/imunologia
3.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677919

RESUMO

Immune checkpoint inhibitors have ushered in a new era of cancer treatment by increasing the likelihood of long-term survival for patients with metastatic disease and by introducing fresh therapeutic indications in cases where the disease is still in its early stages. Immune checkpoint inhibitors that target the proteins cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1/programmed death ligand-1 have significantly improved overall survival in patients with certain cancers and are expected to help patients achieve complete long-lasting remissions and cures. Some patients who receive immune checkpoint inhibitors, however, either experience therapeutic failure or eventually develop immunotherapy resistance. Such individuals are common, which necessitates a deeper understanding of how cancer progresses, particularly with regard to nutritional regulation in the tumor microenvironment (TME), which comprises metabolic cross-talk between metabolites and tumor cells as well as intracellular metabolism in immune and cancer cells. Combination of immunotherapy with targeted metabolic regulation might be a focus of future cancer research despite a lack of existing clinical evidence. Here, we reviewed the significance of the tumor microenvironment and discussed the most significant immunological checkpoints that have recently been identified. In addition, metabolic regulation of tumor immunity and immunological checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways were also incorporated to discuss the possible metabolism-based treatment methods being researched in preclinical and clinical settings. This review will contribute to the identification of a relationship or crosstalk between tumor metabolism and immunotherapy, which will shed significant light on cancer treatment and cancer research.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
4.
Cell Mol Biol (Noisy-le-grand) ; 68(10): 117-123, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114261

RESUMO

A group of protozoan parasites known as Leishmania species can cause a variety of chronic illnesses, ranging from self-healing lesions to fatal outcomes. Drug-resistant pathogens have become common due to the lack of safe and effective medications, which has sparked the development of new therapeutic interventions, particularly plant-based natural extracts. As a way to avoid chemotherapy's side effects, natural herbal remedies have drawn more attention. In addition to having anti-inflammatory, anticancer, and cosmetic properties, the secondary metabolites of plants, such as phenolic compounds, flavonoids, alkaloids, and terpenes, have a number of positive effects on our health. Natural metabolites such as naphthoquinone, alkaloids, benzophenones, etc. that have antileishmanial and antiprotozoal activity have been the subject of extensive research. In this review paper, it can be concluded that these natural extracts can be developed into excellent therapeutic agents against Leishmaniasis.


Assuntos
Alcaloides , Antiprotozoários , Leishmania , Leishmaniose , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico
5.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 20-27, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114313

RESUMO

Herbal medications or formulations are regularly recommended by clinicians as a potential therapeutic method for a variety of human ailments, including cancer. Although Prosopis juliflora extracts have shown promise in anticancer activity, the effects on prostate cancer and the accompanying molecular mechanisms of action are still unexplored. This research aims at the antioxidant, antiproliferative, and apoptosis-inducing properties of Prosopis juliflora methanolic leaves extract in human prostate cancer LNCaP cells. The antioxidant ability of the extract was assessed using the DPPH (2, 2-diphenyl-2-picrylhydrazyl) and two additional reducing power tests. Antitumor activity was determined using MTT cell viability tests and LDH cytotoxicity assays. The probable mechanism of apoptotic cell death was further investigated utilizing a caspase-3 activation assay and qRT-PCR mRNA expression investigations of apoptotic-related genes. The results revealed that the methanol extract of Prosopis juliflora leaves contains alkaloids, flavonoids, tannins, glycosides, and phenols, all of which have substantial antioxidant activity. In vitro anticancer tests demonstrated that extract therapy resulted in a dose-dependent reduction in cell viability of LNCaP prostate cancer cells, but normal HaCaT cells showed no cytotoxic effects. Furthermore, plant extract therapy increased caspase-3 activation and mRNA expression of apoptotic-related genes, suggesting that this could be a mechanism for cancer cell growth suppression. The significance of Prosopis juliflora as a source of new antioxidant compounds against prostate cancer was emphasized in the current study. However, more study is needed to demonstrate the efficacy of Prosopis juliflora leaves extract in the treatment of prostate cancer.


Assuntos
Prosopis , Neoplasias da Próstata , Masculino , Humanos , Antioxidantes/química , Prosopis/química , Caspase 3/genética , Caspase 3/análise , Extratos Vegetais/química , Neoplasias da Próstata/tratamento farmacológico , Folhas de Planta/química , RNA Mensageiro
6.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 90-96, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114302

RESUMO

PKP1 has been crucially involved in enhancing the MYC translation leading to lung carcinogenesis via evading numerous tumour-suppressing checkpoint systems. Plakophilin 1(PKP1) is the part of armadillo and plakophilin gene families and it is a necessary component of desmosomes. Several researches reported PKP1 protein as one of the most overexpressed proteins in human lung cancer. Therefore, we have designed our research towards elucidating better plant-based compounds as drug candidates for the management of lung cancer with minimal adverse effects over other chemotherapeutic drugs such as afatinib. This study comprises forty-six flavonoids for targeting PKP1 using in silico approaches that were not used earlier as an anti-cancerous agent targeting PKP1 in lung cancer treatment. Flavonoids are plant-derived natural compounds that exhibited enormous anti-cancerous potential against several human cancers. NPACT database was used to screen potent flavonoids that have not been used to target the PKP1 protein in lung cancer. Patch Dock and CB Dock were employed to elucidate the PKP1 (1XM9) inhibitory potential of selected flavonoids. Analysis with both the docking tools has revealed that calyxins I  showed maximum affinity in comparison to the standard drug, afatinib. Further PASS and BAS analyses were performed using SWISS ADME and molinspiration to investigate the pharmacokinetic profiling of potent flavonoids having significant binding energy. Visualization of complexes was done by using UCSF chimera. However, further detailed in vitro studies are needed to validate the candidature of calyxinsI for being developed as an anticancer drug for the management of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Afatinib , Neoplasias Pulmonares/tratamento farmacológico , Proteínas/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Placofilinas/genética , Placofilinas/metabolismo
7.
Cell Mol Biol (Noisy-le-grand) ; 68(8): 52-56, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36800837

RESUMO

The present work is concerned with the studies of the organism causing wood decay of twigs and branches of citrus orchards, date palm Phoenix dactylifera L, and ficus trees. A survey for the occurrence of this disease in the main growing areas was achieved by the researchers. The following species of citrus orchards [lime (C. aurantifolia), sweet orange (C. sinensis), and mandarin (C. reticulate)] were surveyed, and so date palm and ficus trees. However, the results showed that the incidence of this disease was about 100%. Laboratory examinations data revealed mainly two fungal species causing the disease: Physalospora rhodina (P.rhodina)  and Diaporthe citri (D. citri). In addition that, both fungi, which are P. rhodina and D. citri affected the vessels of tree tissues. According to the pathogenicity test, the fungus P. rhodina caused a breakdown of parenchyma cells, and the fungus D. citri caused the darkening of the xylem.


Assuntos
Citrus sinensis , Citrus , Ficus , Phoeniceae , Árvores
8.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 75-84, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495515

RESUMO

Protein tyrosine phosphatase-1B (PTP-1B) is a well-known therapeutic target for diabetes and obesity as it suppresses insulin and leptin signaling. PTP-1B deletion or pharmacological suppression boosted glucose homeostasis and insulin signaling without altering hepatic fat storage. Inhibitors of PTP-1B may be useful in the treatment of type 2 diabetes, and shikonin, a naturally occurring naphthoquinone dye pigment, is reported to inhibit PTP-1B and possess antidiabetic properties. Since the cell contains a large number of phosphatases, PTP-1B inhibitors must be effective and selective. To explore more about the mechanism underlying the inhibitor's efficacy and selectivity, we investigated its top four pharmacophores and used site-directed mutagenesis to insert amino acid mutations into PTP-1B as an extension of our previous study where we identified 4 pharmacophores of shikonin. The study aimed to examine the site-directed mutations like R24Y, S215E, and S216C influence the binding of shikonin pharmacophores, which act as selective inhibitors of PTP-1B. To achieve this purpose, docking and molecular dynamics simulations of wild-type (WT) and mutant PTP-1B with antidiabetic compounds were undertaken. The simulation results revealed that site-directed mutations can change the hydrogen bond and hydrophobic interactions between shikonin pharmacophores and many residues in PTP-1B's active site, influencing the drug's binding affinity. These findings could aid researchers in better understanding PTP-1B inhibitors' selective binding mechanism and pave the path for the creation of effective PTP-1B inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ligação Proteica , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico
9.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897885

RESUMO

Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cobre/metabolismo , Humanos , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Neoplasias/metabolismo
10.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234927

RESUMO

Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.


Assuntos
Tratamento Farmacológico da COVID-19 , Capsicum , Animais , Antioxidantes/farmacologia , Capsaicina/farmacologia , Capsicum/química , Flavonoides , Humanos , Oxigênio , SARS-CoV-2
11.
Can J Infect Dis Med Microbiol ; 2022: 3399137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523753

RESUMO

Globally, the issue of microbial resistance to medicines and heavy metals is getting worse. There are few reports or data available for Proteus vulgaris (P. vulgaris), particularly in India. This investigation intends to reveal the bacteria's ability to transmit genes and their level of resistance as well. The wastewater samples were taken from several hospitals in Lucknow City, India, and examined for the presence of Gram-negative bacteria that were resistant to antibiotics and heavy metals. The microbial population count in different hospital wastewaters decreases with increasing concentrations of metal and antibiotics. Among all the examined metals, Ni and Zn had the highest viable counts, whereas Hg, Cd, and Co had the lowest viable counts. Penicillin, ampicillin, and amoxicillin, among the antibiotics, demonstrated higher viable counts, whereas tetracycline and erythromycin exhibited lower viable counts. The MIC values for the P. vulgaris isolates tested ranged from 50 to 16,00 µg/ml for each metal tested. The multiple metal resistance (MMR) index, which ranged from 0.04 to 0.50, showed diverse heavy metal resistance patterns in all P. vulgaris isolates (in the case of 2-7 metals in various combinations). All of the tested isolates had methicillin resistance, whereas the least number of isolates had ofloxacin, gentamycin, or neomycin resistance. The P. vulgaris isolates displayed multidrug resistance patterns (2-12 drugs) in various antibiotic combinations. The MAR indexes were shown to be between (0.02-0.7). From the total isolates, 98%, 84%, and 80% had urease, gelatinase, and amylase activity, whereas 68% and 56% displayed protease and beta-lactamase activity. Plasmids were present in all the selected resistant isolates and varied in size from 42.5 to 57.0 kb and molecular weight from 27.2 to 37.0 MD. The transmission of the antibiotic/metal resistance genes was evaluated between a total of 7 pairs of isolates. A higher transfer frequency (4.4 × 10-1) was observed among antibiotics, although a lower transfer frequency (1.0 × 10-2) was observed against metals in both the media from the entire site tested. According to exponential decay, the population of hospital wastewater declined in the following order across all sites: Site II > Site IV > Site III > Site I for antibiotics and site IV > site II > site I >site III for metal. Different metal and antibiotic concentrations have varying effects on the population. The metal-tolerant P. vulgaris from hospital wastewater was studied in the current study had multiple distinct patterns of antibiotic resistance. It could provide cutting-edge methods for treating infectious diseases, which are essential for managing and assessing the risks associated with hospital wastewater, especially in the case of P. vulgaris.

12.
Sci Rep ; 14(1): 16047, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992105

RESUMO

ß-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. ß-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated ß-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are ß-glucan and alginate sealing made slow and sustained release of the Quercetin from the ß-glucan particles. Morphological analysis of the hollow and Quercetin loaded ß-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow ß-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived ß-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.


Assuntos
Agaricus , Antineoplásicos , Antioxidantes , Quercetina , Saccharomyces cerevisiae , beta-Glucanas , Quercetina/farmacologia , Quercetina/química , beta-Glucanas/farmacologia , beta-Glucanas/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Agaricus/química , Saccharomyces cerevisiae/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células PC-3 , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
13.
Biomolecules ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397437

RESUMO

Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.


Assuntos
Neoplasias , Fator de Transcrição STAT3 , Humanos , Apoptose , Proliferação de Células , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Terpenos/farmacologia
14.
ACS Appl Bio Mater ; 7(6): 3515-3534, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787337

RESUMO

Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.


Assuntos
Alginatos , Materiais Biocompatíveis , Neoplasias da Mama , Quitosana , Hidrogéis , Imunoterapia , Quitosana/química , Alginatos/química , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hidrogéis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Feminino , Teste de Materiais , Antineoplásicos/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Animais
15.
Artigo em Inglês | MEDLINE | ID: mdl-38333969

RESUMO

BACKGROUND: The prevalence of diabetes is rapidly increasing in India, even among young adult individuals. Rare adiponectin gene (ADIPOQ) variants may be predominantly present in Indians and decrease the circulatory levels of APN (Adiponectin). Studies reported that ADIPOQ gene variants were associated with type 2 diabetes mellitus (T2DM) and its complications in the Indian population. OBJECTIVES: To review the association of specific ADIPOQ gene variants with T2DM and its associated complications. MATERIALS & METHODS: A search of Pubmed, Chinhal, Medline, Scopus, Web of Science databases, and Google Scholar search engine was performed to retrieve articles by using the following keywords; "ADIPOQ and T2DM", "ADIPOQ and India," "ADIPOQ gene variants and T2DM", "ADIPOQ gene variants and T2DM and India", "SNPs of ADIPOQ gene and T2DM", "SNPs of ADIPOQ gene and India," SNPs of ADIPOQ gene and T2DM and India". Eligibility criteria for the inclusion of articles: Original, Case-Control Study, and Full-Text articles were published in the English language till the end of April 2023. RESULTS: A total of 540 articles were retrieved. Out of this, only 18 articles were found suitable to include in this systematic narrative review. The most studied ADIPOQ gene variants were found to be +10211T/G (rs17846866), +45T/G (rs2241766), and +276G/T (rs1501299) in different Indian populations. CONCLUSION: It was reviewed that ADIPOQ gene variants +10211T/G (rs17846866), +45T/G (rs2241766), and +276G/T (rs1501299) were predominantly present in the Indian population, and decreasing the circulatory levels of APN and significantly associated with T2DM and its complications.

16.
ACS Omega ; 9(11): 12500-12514, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524425

RESUMO

Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.

17.
Biomed Pharmacother ; 173: 116363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479184

RESUMO

Ferroptosis, a novel form of regulated cell death characterized by dependence on iron and lipid peroxidation, has been implicated in a wide range of clinical conditions including neurological diseases, cardiovascular disorders, acute kidney failure, and various types of cancer. Therefore, it is critical to suppress cancer progression and proliferation. Ferroptosis can be triggered in cancer cells and some normal cells by synthetic substances, such as erastin, Ras-selective lethal small molecule-3, or clinical pharmaceuticals. Natural bioactive compounds are traditional drug discovery tools, and some have been therapeutically used as dietary additives or pharmaceutical agents against various malignancies. The fact that natural products have multiple targets and minimal side effects has led to notable advances in anticancer research. Research has indicated that ferroptosis can also be induced by natural compounds during cancer treatment. In this review, we focused on the most recent developments in emerging molecular processes and the significance of ferroptosis in cancer. To provide new perspectives on the future development of ferroptosis-related anticancer medications, we also provide a summary of the implications of natural phytochemicals in triggering ferroptosis through ROS production and ferritinophagy induction in a variety of malignancies.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Sci Rep ; 14(1): 16437, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013991

RESUMO

Inhalable microparticle-based anti TB drug delivery systems are being investigated extensively for Tuberculosis [TB] treatment as they offer efficient and deep lung deposition with several advantages over conventional routes. It can reduce the drug dose, treatment duration and toxic effects and optimize the drug bioavailability. Yeast derived ß-glucan is a ß-[1-3/1-6] linked biocompatible polymer and used as carrier for various biomolecules. Due to presence of glucan chains, particulate glucans act as PAMP and thereby gets internalized via receptor mediated phagocytosis by the macrophages. In this study, ß-glucan microparticles were prepared by adding l-leucine as excipient, and exhibited 70% drug [Rifabutin] loading efficiency. Further, the sizing and SEM data of particles revealed a size of 2-4 µm with spherical dimensions. The FTIR and HPLC data confirmed the ß-glucan composition and drug encapsulations efficiency of the particles. The mass median aerodynamic diameter [MMAD] and geometric standard deviation [GSD] data indicated that these particles are inhalable in nature and have better thermal stability as per DSC thermogram. These particles were found to be non-toxic upto a concentration of 80 µg/ml and were found to be readily phagocytosed by human macrophage cells in-vitro as well as in-vivo by lung alveolar macrophage. This study provides a framework for future design of inhalable ß-glucan particle based host-directed drug delivery system against pulmonary TB.


Assuntos
Sistemas de Liberação de Medicamentos , Rifabutina , beta-Glucanas , Rifabutina/administração & dosagem , Rifabutina/farmacocinética , Rifabutina/química , beta-Glucanas/química , Humanos , Administração por Inalação , Tuberculose Pulmonar/tratamento farmacológico , Tamanho da Partícula , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Portadores de Fármacos/química , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Antituberculosos/química
19.
Chem Biol Drug Des ; 101(6): 1446-1458, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746671

RESUMO

Cancer is a complicated malignancy controlled by numerous intrinsic and extrinsic pathways. There has been a significant increase in interest in recent years in the elucidation of cancer treatments based on natural extracts that have fewer side effects. Numerous natural product-derived chemicals have been investigated for their anticancer effects in the search for an efficient chemotherapeutic method. Therefore, the rationale behind this review is to provide a detailed insights about the anticancerous potential of apigenin via modulating numerous cell signaling pathways. An ingestible plant-derived flavonoid called apigenin has been linked to numerous anticancerous potential in numerous experimental and biological studies. Apigenin has been reported to induce cell growth arrest and apoptotic induction by modulating multiple cell signaling pathways in a wider range of human tumors including those of the breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach. Oncogenic protein networks, abnormal cell signaling, and modulation of the apoptotic machinery are only a few examples of diverse molecular interactions and processes that have not yet been thoroughly addressed by scientific research. Thus, keeping this fact in mind, we tried to focus our review towards summarizing the apigenin-mediated modulation of oncogenic pathways in various malignancies that can be further utilized to develop a potent therapeutic alternative for the treatment of various cancers.


Assuntos
Apigenina , Neoplasias , Masculino , Humanos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral
20.
Artigo em Inglês | MEDLINE | ID: mdl-36924095

RESUMO

Breast cancer is avertible yet one of the most widespread carcinomas globally. Though periodic screening and monitoring have resulted in reduced incidences, the malignancy claims increased death rates across the globe. Due to the non-specific and aggressive nature of available conventional cancer therapeutics, there is a crucial need for better treatment paradigms. Recent advancements in nanotechnology have aided in this by utilizing nanocarriers in targeted drug delivery approaches. Optimized nanoparticles have been used to enhance the circulation time and target the efficacy of conventional therapeutic drugs. Passive targeting comprises surface modulation to avoid drug elimination via a standard body defense system. Active targeting includes chemical interaction with various genes, receptors, and antigens overexpressed during cancer progression. Therefore, the present review recapitulates drug delivery approaches and nanoparticle-based targeting that can potentially overcome the limitations of conventional drug therapies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA