Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin J Gastroenterol ; 17(3): 383-395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461165

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is an uncommon genetic disorder inherited in an autosomal recessive pattern that affects the muscles that line the bladder and intestines. The most common genes associated with MMIHS mutations are ACTG2, LMOD1, MYH11, MYL9, MYLK, and PDCL3. However, the complete genetic landscape of MMIHS still needs to be fully understood. The diagnosis of MMIHS can be challenging. However, advances in prenatal and diagnostic techniques, such as ultrasound and fetal urine analysis, have improved the ability to detect the syndrome early. Targeted next-generation sequencing (NGS) and other diagnostic tests can also diagnose MMIHS. The management of MMIHS involves addressing severe intestinal dysmotility, which often necessitates total parenteral nutrition (TPN), which can lead to complications such as hepatotoxicity and nutritional deficiencies. Multivisceral and intestinal transplantation has emerged as therapeutic options, offering the potential for improved outcomes and enteral autonomy. Understanding the genetic underpinnings of MMIHS is crucial for personalized care. While the prognosis varies, timely interventions and careful monitoring enhance patient outcomes. Genetic studies have given us valuable insights into the molecular mechanisms of MMIHS. These studies have identified mutations in genes involved in the development and function of smooth muscle cells. They have also shown that MMIHS is associated with defects in the signaling pathways that control muscle contraction. Continued research in the genetics of MMIHS holds promise for unraveling the complexities of MMIHS and improving the lives of affected individuals.


Assuntos
Anormalidades Múltiplas , Colo , Pseudo-Obstrução Intestinal , Mutação , Bexiga Urinária , Humanos , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/terapia , Pseudo-Obstrução Intestinal/diagnóstico , Bexiga Urinária/anormalidades , Colo/anormalidades , Anormalidades Múltiplas/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
Transl Oncol ; 35: 101730, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406550

RESUMO

Non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, with growing evidence implicating their involvement in cancer development and progression. The potential of ncRNAs as diagnostic and prognostic biomarkers for cancer is promising, with emphasis on their use in liquid biopsy and tissue-based diagnostics. In a nutshell, the review comprehensively summarizes the diverse classes of ncRNAs implicated in cancer, including microRNAs, long non-coding RNAs, and circular RNAs, and their functions and mechanisms of action. Furthermore, we describe the potential therapeutic applications of ncRNAs, including anti-miRNA oligonucleotides, siRNAs, and other RNA-based therapeutics in cancer treatment. However, significant challenges remain in developing effective ncRNA-based diagnostics and therapeutics, including the lack of specificity, limited understanding of mechanisms, and delivery challenges. This review also covers the current state-of-the-art non-coding RNA research technologies and bioinformatic analysis tools. Lastly, we outline future research directions in non-coding RNA research in cancer, including developing novel biomarkers, therapeutic targets, and modalities. In summary, this review provides a comprehensive understanding of non-coding RNAs in cancer and their potential clinical applications, highlighting both the opportunities and challenges in this rapidly evolving field.

3.
Case Rep Oncol ; 16(1): 972-979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900819

RESUMO

Micropapillary urothelial carcinoma (MPUC) of the renal pelvis is an upper tract urothelial carcinoma originating in the renal pelvis region. Few genetic studies are available, and the mechanism of pathogenesis of genetically driven models is unclear. We report a case of genomic alterations in MPUC of the renal pelvis and compare the results with existing literature. DNA was extracted, followed by the next-generation sequencing of 351 oncogenes and tumor suppressor genes. Targeted gene sequencing analysis revealed somatic variants in ERBB2, KMT2C, FOXA1, and germline variants in CDKN1B, ELF3, TP53, and RB1 genes. The present case study sheds light on recognizing genetic variants in high-grade MPUC of the renal pelvis. Understanding molecular mechanisms helps with better prognostication and development of more effective therapeutics and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA