Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Xenobiotica ; 47(12): 1077-1089, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27855567

RESUMO

1. Pradigastat is a potent and specific diacylglycerol acyltransferase-1 (DGAT1) inhibitor effective in lowering postprandial triglycerides (TG) in healthy human subjects and fasting TG in familial chylomicronemia syndrome (FCS) patients. 2. Here we present the results of human oral absorption, metabolism and excretion (AME), intravenous pharmacokinetic (PK), and in vitro studies which together provide an overall understanding of the disposition of pradigastat in humans. 3. In human in vitro systems, pradigastat is metabolized slowly to a stable acyl glucuronide (M18.4), catalyzed mainly by UDP-glucuronosyltransferases (UGT) 1A1, UGT1A3 and UGT2B7. M18.4 was observed at very low levels in human plasma. 4. In the human AME study, pradigastat was recovered in the feces as parent drug, confounding the assessment of pradigastat absorption and the important routes of elimination. However, considering pradigastat exposure after oral and intravenous dosing, this data suggests that pradigastat was completely bioavailable in the radiolabeled AME study and therefore completely absorbed. 5. Pradigastat is eliminated very slowly into the feces, presumably via the bile. Renal excretion is negligible. Oxidative metabolism is minimal. The extent to which pradigastat is eliminated via metabolism to M18.4 could not be established from these studies due to the inherent instability of glucuronides in the gastrointestinal tract.


Assuntos
Acetatos/farmacocinética , Aminopiridinas/farmacocinética , Diacilglicerol O-Aciltransferase/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos
2.
Drug Metab Dispos ; 43(4): 620-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655830

RESUMO

Recent European Medicines Agency (final) and US Food and Drug Administration (draft) drug interaction guidances proposed that human circulating metabolites should be investigated in vitro for their drug-drug interaction (DDI) potential if present at ≥ 25% of the parent area under the time-concentration curve (AUC) (US Food and Drug Administration) or ≥ 25% of the parent and ≥ 10% of the total drug-related AUC (European Medicines Agency). To examine the application of these regulatory recommendations, a group of scientists, representing 18 pharmaceutical companies of the Drug Metabolism Leadership Group of the Innovation and Quality Consortium, conducted a scholarship to assess the risk of contributions by metabolites to cytochrome P450 (P450) inhibition-based DDIs. The group assessed the risk of having a metabolite as the sole contributor to DDI based on literature data and analysis of the 137 most frequently prescribed drugs, defined structural alerts associated with P450 inhibition/inactivation by metabolites, and analyzed current approaches to trigger in vitro DDI studies for metabolites. The group concluded that the risk of P450 inhibition caused by a metabolite alone is low. Only metabolites from 5 of 137 drugs were likely the sole contributor to the in vivo P450 inhibition-based DDIs. Two recommendations were provided when assessing the need to conduct in vitro P450 inhibition studies for metabolites: 1) consider structural alerts that suggest P450 inhibition potential, and 2) use multiple approaches (e.g., a metabolite cut-off value of 100% of the parent AUC and the R(met) strategy) to predict P450 inhibition-based DDIs caused by metabolites in the clinic.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Medicamentos sob Prescrição/farmacocinética , Área Sob a Curva , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Indústria Farmacêutica/legislação & jurisprudência , Europa (Continente) , Bolsas de Estudo , Regulamentação Governamental , Guias como Assunto , Humanos , Medicamentos sob Prescrição/metabolismo , Medicamentos sob Prescrição/farmacologia , Medição de Risco/economia , Medição de Risco/legislação & jurisprudência , Medição de Risco/métodos , Estados Unidos , United States Food and Drug Administration
3.
Cancer Chemother Pharmacol ; 70(5): 653-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010851

RESUMO

PURPOSE: This study investigated the metabolism and excretion of dovitinib (TKI258), a tyrosine kinase inhibitor that inhibits fibroblast, vascular endothelial, and platelet-derived growth factor receptors, in patients with advanced solid tumors. METHODS: Four patients (cohort 1) received a single 500 mg oral dose of (14)C-dovitinib, followed by the collection of blood, urine, and feces for ≤10 days. Radioactivity concentrations were measured by liquid scintillation counting and plasma concentrations of dovitinib by liquid chromatography-tandem mass spectrometry. Both techniques were applied for metabolite profiling and identification. A continuous-dosing extension phase (nonlabeled dovitinib 400 mg daily) was conducted with the 3 patients from cohort 1 and 9 additional patients from cohort 2. RESULTS: The majority of radioactivity was recovered in feces (mean 61 %; range 52-69 %), as compared with urine (mean 16 %; range 13-21 %). Only 6-19 % of the radioactivity was recovered in feces as unchanged dovitinib, suggesting high oral absorption. (14)C-dovitinib was eliminated predominantly via oxidative metabolism, with prominent primary biotransformations including hydroxylation on the fluorobenzyl ring and N-oxidation and carbon oxidation on the methylpiperazine moiety. Dovitinib was the most prominent radioactive component in plasma. The high apparent volume of distribution (2,160 L) may indicate that dovitinib distributes extensively to tissues. Adverse events were predominantly mild to moderate, and most common events included nausea, vomiting, constipation, diarrhea, and fatigue. CONCLUSIONS: Dovitinib was well absorbed, extensively distributed, and eliminated mainly by oxidative metabolism, followed by excretion, predominantly in feces. The adverse events were as expected for this class of drug.


Assuntos
Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Quinolonas/farmacocinética , Administração Oral , Adulto , Idoso , Antineoplásicos/efeitos adversos , Benzimidazóis/efeitos adversos , Cromatografia Líquida , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Quinolonas/efeitos adversos , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Espectrometria de Massas em Tandem , Distribuição Tecidual , Adulto Jovem
4.
J Med Chem ; 52(9): 3039-46, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19354254

RESUMO

3-[(3aR,4R,5S,7aS)-5-{(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy}-4-(4-fluorophenyl)octahydro-2H-isoindol-2-yl]cyclopent-2-en-1-one (17) is a high affinity, brain-penetrant, hydroisoindoline-based neurokinin-1 (NK(1)) receptor antagonist with a long central duration of action in preclinical species and a minimal drug-drug interaction profile. Positron emission tomography (PET) studies in rhesus showed that this compound provides 90% NK(1) receptor blockade in rhesus brain at a plasma level of 67 nM, which is about 10-fold more potent than aprepitant, an NK(1) antagonist marketed for the prevention of chemotherapy-induced and postoperative nausea and vomiting (CINV and PONV). The synthesis of this enantiomerically pure compound containing five stereocenters includes a Diels-Alder condensation, one chiral separation of the cyclohexanol intermediate, an ether formation using a trichloroacetimidate intermediate, and bis-alkylation to form the cyclic amine.


Assuntos
Encéfalo/metabolismo , Isoindóis/metabolismo , Isoindóis/farmacologia , Antagonistas dos Receptores de Neurocinina-1 , Administração Oral , Animais , Aprepitanto , Células CHO , Cricetinae , Cricetulus , Interações Medicamentosas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Isoindóis/síntese química , Isoindóis/farmacocinética , Macaca mulatta , Morfolinas/farmacologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA