Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(6): 1843-1854, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37097202

RESUMO

Human-induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) have several potential applications in regenerative medicine. A deep understanding of stem cell characteristics is critical for developing appropriate products for use in the clinic. This study aimed to develop approaches for characterizing iPSC-derived NSCs. Data-independent acquisition mass spectrometry (DIA-MS) was used to obtain temporal proteomic profiles of differentiating cells. Principal component analysis of the proteome profiles allowed for the discrimination of cells cultured for different periods. Cells were characterized by Gene Ontology analysis to annotate the upregulated proteins based on their functions. We found that trophoblast glycoprotein (TPBG), a membrane glycoprotein that inhibits the Wnt/ß-catenin pathway, was elevated in NSC and that silencing TPBG promoted proliferation rather than neuronal differentiation. Treatment with Wnt/ß-catenin pathway activators and inhibitors showed that modulating the Wnt/ß-catenin pathway is crucial for differentiation into NSC. These results suggest that the level of TPBG is critical for differentiation into NSC, and TPBG is a potentially critical quality attribute of differentiating cells. In summary, DIA-MS-based proteomics is a promising multi-attribute method for characterizing stem cell-derived products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Diferenciação Celular , Via de Sinalização Wnt
2.
Sci Rep ; 11(1): 11169, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045517

RESUMO

N-glycosylation of glycoproteins, a major post-translational modification, plays a crucial role in various biological phenomena. In central nervous systems, N-glycosylation is thought to be associated with differentiation and regeneration; however, the state and role of N-glycosylation in neuronal differentiation remain unclear. Here, we conducted sequential LC/MS/MS analyses of tryptic digest, enriched glycopeptides, and deglycosylated peptides of proteins derived from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells, which were used as a model of neuronal differentiation. We demonstrate that the production profiles of many glycoproteins and their glycoforms were altered during neuronal differentiation. Particularly, the levels of glycoproteins modified with an N-glycan, consisting of five N-acetylhexosamines, three hexoses, and a fucose (HN5H3F), increased in dopaminergic neuron-rich cells (DAs). The N-glycan was deduced to be a fucosylated and bisected biantennary glycan based on product ion spectra. Interestingly, the HN5H3F-modified proteins were predicted to be functionally involved in neural cell adhesion, axon guidance, and the semaphorin-plexin signaling pathway, and protein modifications were site-selective and DA-selective regardless of protein production levels. Our integrated method for glycoproteome analysis and resultant profiles of glycoproteins and their glycoforms provide valuable information for further understanding the role of N-glycosylation in neuronal differentiation and neural regeneration.


Assuntos
Glicoproteínas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese , Linhagem Celular , Glicosilação , Humanos , Proteínas de Membrana/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA