Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Opt Express ; 31(23): 38815-38830, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017976

RESUMO

We study the broadband scattering of light by composite nanoparticles through the Born approximation, FEM simulations, and measurements. The particles consist of two materials and show broadband directional scattering. From the analytical approach and the subsequent FEM simulations, it was found that the directional scattering is due to the phase difference between the fields scattered by of each of the two materials of the nanoparticle. To confirm this experimentally, composite nanoparticles were produced using ion-beam etching. Measurements of SiO2 / Au composite nanoparticles confirmed the directional scattering which was predicted by theory and simulations.

2.
Opt Express ; 28(14): 20660-20668, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680121

RESUMO

Improving the image quality of small particles is a classic problem and especially challenging when the distance between particles are below the optical diffraction limit. We propose a imaging system illuminated with radially polarized light combined with a suitable substrate that contains a thin dielectric layer to demonstrate that the imaging quality can be enhanced. The coupling between the evanescent wave produced in a designed thin dielectric layer, the small particles and the propagating wave forms a mechanism to transfer sub-wavelength information about the particles to the far field. The smallest distinguished distance reaches to 0.634λ, when the imaging system is composed of a high numerical aperture (NA=0.9) lens and the illumination wavelength λ = 632nm, beyond the diffraction limit 0.678λ. The lateral resolution can be further improved by combining the proposed structure with superresolution microscopy techniques.

3.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 914-924, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543591

RESUMO

Diffractive shearing interferometry (DSI) is a method that has recently been developed to perform lensless imaging using extreme ultraviolet radiation generated by high-harmonic generation. In this paper, we investigate the uniqueness of the DSI solution and the requirements for the support constraint size. We find that there can be multiple solutions to the DSI problem that consist of displaced copies of the actual object. These alternative solutions can be eliminated by enforcing a sufficiently tight support constraint, or by introducing additional synthetic constraints. We furthermore propose a new DSI algorithm inspired by the analogy with coherent diffractive imaging (CDI) algorithms: the original DSI algorithm is in a way analogous to the hybrid input-output algorithm as used in CDI, and we propose a new algorithm that is more analogous to the error reduction algorithm as used in CDI. We find that the newly proposed algorithm is suitable for final refinement of the reconstruction.

4.
Opt Express ; 27(24): 35336-35348, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878704

RESUMO

Optical angular momenta (AM) have attracted tremendous research interest in recent years. In this paper we theoretically investigate the electromagnetic field and angular momentum properties of tightly focused arbitrary cylindrical vortex vector (CVV) input beams. An absorptive particle is placed in focused CVV fields to analyze the optical torques. The spin-orbit motions of the particle can be predicted and controlled when the influences of different parameters, such as the topological charge, the polarization and the initial phases, are taken into account. These findings will be helpful in optical beam shaping, optical spin-orbit interaction and practical optical manipulation.

5.
Appl Opt ; 58(22): 5916-5923, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503906

RESUMO

Scatterometry is an important nonimaging and noncontact method for optical metrology. In scatterometry certain parameters of interest are determined by solving an inverse problem. This is done by minimizing a cost functional that quantifies the discrepancy among measured data and model evaluation. Solving the inverse problem is mathematically challenging owing to the instability of the inversion and to the presence of several local minima that are caused by correlation among parameters. This is a relevant issue, particularly when the inverse problem to be solved requires the retrieval of a high number of parameters. In such cases, methods to reduce the complexity of the problem are to be sought. In this work, we propose an algorithm suitable to automatically determine which subset of the parameters is mostly relevant in the model, and we apply it to the reconstruction of 2D and 3D scatterers. We compare the results with local sensitivity analysis and with the screening method proposed by Morris.

6.
Opt Express ; 26(5): 5857-5874, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529787

RESUMO

A noise-robust extension of iterative phase retrieval algorithms that does not need to assume a noise model is proposed. It works by adapting the intensity constraints using the reconstructed object. Using a proof-of-principle ptychographic experiment with visible light and a spatial light modulator to create an object, the proposed method is tested and it compares favorably to the Extended Ptychographic Iterative Engine (ePIE) with reduced step size. The method is general, so it can also be applied to other iterative reconstruction schemes such as phase retrieval using focus variation.

7.
Opt Express ; 26(7): 9332-9343, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715886

RESUMO

A novel non-iterative phase retrieval method is proposed and demonstrated with a proof-of-principle experiment. The method uses a fixed specially designed mask and through-focus intensity measurements. It is demonstrated that this method is robust to spatial partial coherence in the illumination, making it suitable for coherent diffractive imaging using spatially partially coherent light, as well as for coherence characterization.

8.
Phys Rev Lett ; 120(25): 253901, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979065

RESUMO

We propose a scheme to retrieve the size parameters of a nanoparticle on a glass substrate at a scale much smaller than the wavelength. This is achieved by illuminating the particle using two plane waves to create rich and nontrivial local polarization distributions, and observing the far-field scattering pattern into the substrate. By using this illumination to control the induced complex dipole moment, the exponential decay of power radiated into the supercritical region, as well as directional scattering due to spin-orbit coupling can be exploited to retrieve the particle's shape, size, and position directly from the far-field scattering with high sensitivity and without the need for a complicated and time-consuming optimization algorithm. Our method brings about a far-field superresolution nanometrology scheme based on the interaction of vectorial light with nanoparticles.

9.
Phys Rev Lett ; 121(12): 123202, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296136

RESUMO

Electromagnetic fields carry a linear and an angular momentum, the first being responsible for the existence of the radiation pressure and the second for the transfer of torque from electromagnetic radiation to matter. The angular momentum is considered to have two components, one due to the polarization state of the field, usually called spin angular momentum (SAM), and one due to the existence of topological azimuthal charges in the field phase profile, which leads to the orbital angular momentum (OAM). These two contributions to the total angular momentum of an electromagnetic field appear, however, to not be independent of each other, something which is described as spin-orbit coupling. Understanding the physics of this coupling has kept scientists busy for decades. Very recently it has been shown that electromagnetic fields necessarily carry also invariant radial charges that, as discussed in this Letter, play a key role in the angular momentum. Here we show that the total angular momentum consists in fact of three components: one component only dependent on the spin of the field, another dependent on the azimuthal charges carried by the field, and a third component dependent on the spin and the radial charges contained in the field. By properly controlling the number and coupling among these radial charges it is possible to design electromagnetic fields with a desired total angular momentum. Remarkably, we also discover fields with no orbital angular momentum and a spin angular momentum typical of spin-3/2 objects, irrespective of the fact that photons are spin-1 particles.

10.
Opt Express ; 25(24): 29574-29586, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29220995

RESUMO

Coherent Fourier scatterometry is an optical metrology technique that utilizes the measured intensity of the scattered optical field to reconstruct certain parameters of test structures written on a wafer with nano-scale accuracy. The intensity of the scattered field is recorded with a camera and this information is used to retrieve the grating parameters. To improve sensitivity in the parameter reconstruction, the phase of the scattered field can also be acquired. Interferometry can be used for this purpose, but with the cost of cumbersomeness. In this paper, we show that iterative phase retrieval methods can be applied to retrieve the scattered complex fields from only intensity measurement data. We show that the accuracy of the retrieved complex fields using phase retrieval is comparable to that measured directly using interferometry.

11.
Phys Rev Lett ; 119(5): 053902, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949738

RESUMO

It is generally believed that when a single metallic nanowire is sufficiently small, it scatters like a point electric dipole. We show theoretically when a metallic nanowire is placed inside specially designed beams, the magnetic dipole contribution along with the electric dipole resonance can lead to unidirectional scattering in the far field, fulfilling Kerker's condition. Remarkably, this far-field unidirectional scattering encodes information that is highly dependent on the nanowire's deflection at a scale much smaller than the wavelength. The special roles of small but essential magnetic response along with the plasmonic resonance are highlighted for this extreme sensitivity as compared with the dielectric counterpart. In addition, the same essential role of the magnetic dipole contribution is also presented for a very small metallic nanosphere.

12.
Opt Express ; 24(4): 4128-42, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907063

RESUMO

Aperture based scanning near field optical microscopes are important instruments to study light at the nanoscale and to understand the optical functionality of photonic nanostructures. In general, a detected image is affected by both the transverse electric and magnetic field components of light. The discrimination of the individual field components is challenging as these four field components are contained within two signals in the case of a polarization resolved measurement. Here, we develop a methodology to solve the inverse imaging problem and to retrieve the vectorial field components from polarization and phase resolved measurements. Our methodology relies on the discussion of the image formation process in aperture based scanning near field optical microscopes. On this basis, we are also able to explain how the relative contributions of the electric and magnetic field components within detected images depend on the chosen probe. We can therefore also describe the influence of geometrical and material parameters of individual probes within the image formation process. This allows probes to be designed that are primarily sensitive either to the electric or magnetic field components of light.

13.
Opt Lett ; 41(1): 33-6, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696151

RESUMO

We propose an approach to actively tune the scattering pattern of a Mie-type spherical antenna. The scheme is based on separate control over the induced electric dipole and induced magnetic dipole using two coherent focused beams of radial polarization and azimuthal polarization, respectively. By carefully tuning the amplitude and phase relation of the two beams, a broadband unidirectional scattering can be achieved, even at the antenna's resonant wavelength where the antenna scatters efficiently. By moving the focus of one beam, a drastic switch of the unidirectional scattering can be observed. Such a scheme enables the design of ultra-compact optical switches and directional couplers based on nanoantennas.


Assuntos
Luz , Nanopartículas , Fenômenos Ópticos , Espalhamento de Radiação
14.
Opt Lett ; 41(18): 4285-8, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628378

RESUMO

Hyperbolic metamaterials (HMMs) are anisotropic materials with a permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as a cladding material, a waveguide that only supports higher-order modes can be achieved, while the lower-order modes become leaky and are absorbed in the HMM cladding. This counter-intuitive property can lead to novel application in optical communications and photonic integrated circuits. The loss in our HMM insulator-HMM (HIH) waveguide is smaller than that of similar guided modes in a metal-insulator-metal (MIM) waveguide.

15.
Phys Rev Lett ; 117(11): 113903, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661688

RESUMO

Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas.

16.
J Opt Soc Am A Opt Image Sci Vis ; 33(6): 1010-4, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27409426

RESUMO

Closed formulas are presented for the electromagnetic field of given power in the lens pupil, which maximizes the longitudinal electric field when focusing through an interface at arbitrary depth along the optical axis. The optimum pupil field is found to be a continuous, monotonously increasing function of the radial pupil coordinate, which differs considerably from the commonly used annular illumination. Several cases of pupil fields and focused fields are shown for different materials, NA, and focusing depth. Also, the effect of absorbing media is considered.

17.
Phys Rev Lett ; 114(10): 103903, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815935

RESUMO

A fast noninvasive method based on scattering from a focused radially polarized light to detect and localize subwavelength nanoparticles on a substrate is presented. The technique relies on polarization matching in the far field between scattered and spurious reflected fields. Results show a localization uncertainty of ≈10^{-4}λ^{2} is possible for a particle of area ≈λ^{2}/16. The effect of simple pupil shaping is also shown.

18.
Opt Express ; 22(11): 13250-62, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921519

RESUMO

Inspection tools for nano-particle contamination on a planar substrate surface is a critical problem in micro-electronics. The present solutions are either expensive and slow or inexpensive and fast but have low sensitivity because of limitations due to diffraction. Most of them are also substrate specific. In this article we report how Coherent Fourier Scatterometry is used for detection of particles smaller than λ/4. Merits of the technique, especially, the procedures to improve SNR, its flexibility and its robustness on rough surfaces are discussed with simulated and experimental results.

19.
Opt Express ; 22(1): 311-24, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24514993

RESUMO

In several optical systems, a specific Point Spread Function (PSF) needs to be generated. This can be achieved by shaping the complex field at the pupil. The Extended Nijboer-Zernike (ENZ) theory relates complex Zernike modes on the pupil directly to functions in the focal region. In this paper, we introduce a method to engineer a PSF using the ENZ theory. In particular, we present an optimization algorithm to design an extended depth of focus with high lateral resolution, while keeping the transmission of light high (over 60%). We also have demonstrated three outcomes of the algorithm using a Spatial Light Modulator (SLM).


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Lentes , Modelos Teóricos , Simulação por Computador , Luz , Espalhamento de Radiação
20.
Opt Express ; 22(15): 18299-309, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089450

RESUMO

We present a broadband quantum cascade laser-based spectroscopic system covering the region between 850 and 1250 cm(-1). Its robust multipass cavity ensures a constant interaction length over the entire spectral region. The device enables the detection and identification of numerous molecules present in a complex gas mixture without any pre-treatment in two minutes. We demonstrate that we can detect sub-ppmv concentration of acetone in presence of 2% of water at the same wavenumber region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA