Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(3): 3998-4014, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785378

RESUMO

We present the results of our performance studies of the upgraded Cherenkov time-of-flight (ToF) detector for the AFP (ATLAS Forward Proton) project. The latest version consists of solid L-shaped fused silica bars, new customized ALD-coated micro-channel plate photomultipliers (MCP-PMTs) miniPlanacon XPM85112-S-R2D2 with an extended lifetime which operate at low gains (order of 103), and an updated construction. The improvements were aimed to increase the efficiency, the lifetime as well as the radiation hardness of the detector which has been designed to operate in high radiation areas (above 400 kGy/year). The detector was finally tested at the CERN-SPS test-beam facility (120 GeV π+ particles) in August 2021 prior to its installation at the Large Hadron Collider (LHC) at CERN. Measurements proved the detector kept its inner timing resolution of 20 ps despite the rather low gain of its photodetector and reduced optical throughput caused by inevitable changes in the detector geometry.

2.
Opt Express ; 28(13): 19783-19796, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672248

RESUMO

We present the results of performance studies of the upgraded optical part of the time-of-flight subdetector prototype for the AFP (ATLAS Forward Proton) detector obtained during the test campaign in a synchrotron test-beam facility with 5 GeV electrons at the DESY laboratory (Hamburg, Germany) in June 2019. The detection of the particle arrival time is based on generation of Cherenkov light in an L-shaped fused silica bar. In the previous version of the ToF, all bars were made of two pieces (radiator and light guide) glued together with a dedicated glue (Epotek 305). This solution suffers from additional radiation damage of glue. We adopted a new technique of bar production without the need of glue. The new bars have a higher optical throughput by a factor of 1.6, reduced fragility, and better geometrical precision.

3.
Appl Opt ; 48(15): 2884-9, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19458739

RESUMO

A balanced homodyne detection scheme with nanosecond time resolution and sub-shot-noise sensitivity has been developed and successfully tested yielding an efficient detection scheme for high-speed quantum-optical measurements and communication protocols, for example, quantum cryptography. The parameters of the detector and its precise balancing allow complete characterization of quantum states created by femtosecond light pulses that include the measurement of photon number, optical phase, and statistical properties with a high signal-to-noise ratio for the whole bandwidth from DC to several tens of megahertz. The electronic part of the detector is based on a commercially available amplifier that provides ease of construction and use while yielding good performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA