Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(2): 1544-1554, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166478

RESUMO

Age-long ambition of medical scientists has always been advancement in healthcare and therapeutic medicine. Biomedical research indeed claims paramount importance in nanomedicine and drug delivery, and the development of biocompatible storage structures for delivering drugs stands at the heart of emerging scientific works. The delivery of drugs into the human body is nevertheless a nontrivial and challenging task, and it is often addressed by using amphiphilic compounds as nanosized delivery vehicles. Pluronics belong to a peculiar class of biocompatible and thermosensitive nonionic amphiphilic copolymers, and their self-assemblies are employed as drug delivery excipients because of their unique properties. We herein report on the encapsulation of diclofenac sodium within Pluronic F68 self-assemblies in water, underpinning the impact of the drug on the rheological and microstructural evolution of pluronic-based systems. The self-assembly and thermoresponsive micellization were studied through isothermal steady rheological experiments at different temperatures on samples containing 45 wt % Pluronic F68 and different amounts of diclofenac sodium. The adoption of scattering techniques, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), allowed for the description of the system features at the nanometer length scale, providing information about the characteristic size of each part of the micellar structures as a function of temperature and drug concentration. Diclofenac sodium is not a good fellow for Pluronic F68. The triblock copolymer aids the encapsulation of the drug, highly improving its water solubility, whereas diclofenac sodium somehow hinders Pluronic self-assembly. By using a simple empirical model and no fitting parameters, the steady viscosity can be predicted, although qualitatively, through the volume fraction of the micelles extracted through scattering techniques and compared to the rheological one. A tunable control of the viscous behavior of such biomedical systems may be achieved through the suitable choice of their composition.


Assuntos
Micelas , Poloxâmero , Humanos , Poloxâmero/química , Espalhamento a Baixo Ângulo , Diclofenaco , Difração de Raios X , Polímeros , Anti-Inflamatórios , Água/química
2.
Dalton Trans ; 53(5): 2286-2293, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197161

RESUMO

Hafnium catalysts for olefin polymerization are often very sensitive to the nature of cocatalysts, especially if they contain "free" aluminium trialkyls. Herein, cocatalyst effects in Hf-catalysed propene polymerization are examined for four Hf catalysts belonging to the family of CS-symmetric (Hf-CS-Met) and C2-symmetric (Hf-C2-Met) metallocenes, as well as of octahedral (Hf-OOOO) and pentacoordinated (Hf-PyAm) "post-metallocenes". The performance of the recently developed {[iBu2(PhNMe2)Al]2(µ-H)}+[B(C6F5)4]- (AlHAl) cocatalyst is compared with that of established systems like methylalumoxane, phenol-modified methylalumoxane and trityl borate/tri-iso-butylaluminium. The worst catalytic performance is observed with MAO. Conversely, the best cocatalyst varies depending on the Hf catalyst used and the performance indicator of interest, highlighting the complexity and importance of selecting the right precatalyst/cocatalyst combination. AlHAl proved to be a suitable system for all catalysts tested and, in some cases, it provides the best performance in terms of productivity (e.g. with hafnocenes). Furthermore, it generally leads to high molecular weight polymers, also with catalysts enabling easy chain transfer to Al like Hf-PyAm. This suggests that AlHAl has a low tendency to form heterodinuclear adducts with the cationic active species, therefore preventing the formation of dormant sites and/or termination events by chain transfer to Al.

3.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987158

RESUMO

The dinuclear aluminum salt {[iBu2(DMA)Al]2(µ-H)}+[B(C6F5)4]- (AlHAl; DMA = N,N-dimethylaniline) is the prototype of a new class of molecular cocatalysts for catalytic olefin polymerization, its modular nature offering easy avenues for tailoring the activator to specific needs. We report here, as proof of concept, a first variant (s-AlHAl) bearing p-hexadecyl-N,N-dimethylaniline (DMAC16) units, which enhances solubility in aliphatic hydrocarbons. The novel s-AlHAl was used successfully as an activator/scavenger in ethylene/1-hexene copolymerization in a high-temperature solution process.

4.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451163

RESUMO

The performance of C2-symmetric ansa-hafnocene catalysts for isotactic polypropylene typically deteriorates at increasing temperature much faster than that of their zirconium analogues. Herein, we analyze in detail a set of five Hf/Zr metallocene pairs-including some of the latest generation catalysts-at medium- to high-polymerization temperature. Quantitative structure-activity relationship (QSAR) models for stereoselectivity, the ratio allyl/vinyl chain ends, and 2,1/3,1 misinsertions in the polymer indicate a strong dependence of polymerization performance on electrophilicity of the catalyst, which is a function of the ligand framework and the metal center. Based on this insight, the stronger performance decline of hafnocenes is ascribed to electrophilicity-dependent stabilization effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA